

Web Technologies (Csc-353)

Unit 1: Introduction

Introduction to Networking:

Importance of Computer Network:

 Sharing of devices such as printer
and scanner

 Sharing of program and software

Sharing of files Sharing of data

 Sharing of information

 Better Communication using internet
services such as email

Types of computer Network:

Different LAN MAN WAN

Cost Low High Higher

Network Size Small Larger Largest

Speed Fastest Slower Slowest

Transmission Media Twisted-pair Twisted pair, fiber optics Fiber optics, Radio waves, satellite
No. of Computers Smallest Large Largest

Network Architecture:

Network architecture is the overall design of a computer network that describes how a computer network is
configured and what strategies are being used. It is also called network model or network design. Two main
network architecture are:

1) Client/server Network
2) Peer to peer Network

Client/Server:

On a client/server network, one computer
act as a server, that provides services and
the other computers(client) on the network
request services from the server.

Peer-to peer

It is a simple, inexpensive network that

typically connects fewer computers. There is

no central server in this type of network.

Source: http://www.devcpgn.blogspot.com Unit1:1

http://www.devcpgn.blogspot.com/

Difference between client/server and peer-to-peer

Internet and its Evolution:

The Internet is a global network connecting millions of computers. More than 190 countries are linked into
exchanges of data, news and opinions. No one actually owns the Internet, and no single person or organization
controls the Internet in its entirety.

WWW : WWW is a system of interlinked hypertext documents accessed via the Internet. The World Wide Web,

or simply Web, is a way of accessing information over the medium of the Internet. It is an information-sharing

model that is built on top of the Internet. The Web uses the HTTP protocol, only one of the languages spoken

over the Internet, to transmit data. Web services, which use HTTP to allow applications to communicate in order

to exchange business logic, use the Web to share information. The web also utilizes browsers, such as Internet

Explorer or Firefox, to access Web documents called Web pages that are linked to each other via hyperlinks.

Web documents also contain graphics, sounds, text and video.

Web Page: A web page is a document commonly written in Hyper Text Markup Language (HTML) that is
accessible through the Internet network using a browser. A web page is accessed by entering a URL address and
may contain text, graphics, and hyperlinks to other web pages and files.

Web site: A connected group of pages on the World Wide Web regarded as a single entity, usually maintained
by one person or organization and devoted to a single topic or several closely related topics.

URI: Uniform Resource Identifier (URI) is a string of characters used to identify the name of a resource. Such
identification enables interaction with representations of the resource over a network, typically the World Wide
Web, using specific protocols.

URI looks like: public://myfile.jpeg

URL: Web browsers request pages from web servers by using a URL.
The URL is the address of a web page, like: http://sites/default/files/myfile.jpeg
This provides location and protocol which is http part.

* URI is basically a name, it is representation of an entity or some kind of resource somewhere.

* URL specifies where that resource can be found. So URL is a URI but URI is not a URL because URL belongs
to the subset of URI.

Source: http://www.devcpgn.blogspot.com Unit1:2

http://sites/default/files/myfile.jpeg
http://www.devcpgn.blogspot.com/

Web server: Web servers are computers that deliver (serves) Web pages. Every Web server has an IP address

and possibly a domain name. A Web server is a program that uses HTTP (Hypertext Transfer Protocol) to serve
the files that form Web pages to users, in response to their requests, which are forwarded by their computers'

HTTP clients. Dedicated computers and appliances may be referred to as Web servers as well.

Web client: It typically refers to the Web browser in the user's machine.

Web Browser: Browsers are software programs that allow you to search and view the many different kinds of
information that's available on the World Wide Web. The information could be web sites, video or audio
information.

SMTP : Simple Mail Transfer Protocol(SMTP), a protocol for sending e-mail messages between servers. Most e-

mail systems that send mail over the Internet use SMTP to send messages from one server to another; the

messages can then be retrieved with an e-mail client using either POP or IMAP. In addition, SMTP is generally

used to send messages from a mail client to a mail server. This is why you need to specify both the POP or IMAP

server and the SMTP server when you configure your e-mail application. SMTP by default uses TCP port 25.

POP: Post Office Protocol (POP) is an application-layer Internet standard protocol used by local e-mail clients to
retrieve e-mail from a remote server over a TCP/IP connection.

Review of HTML
Introduction to HTML

HTML is a language for describing web pages. It is not a programming language. A markup language
specifies the layout and style of a document. The browser does not display the HTML tags, but uses
the tags to interpret the content of the page.

• HTML stands for Hyper Text Markup Language
• A markup language is a set of markup tags
• The tags describe document content
• HTML documents contain HTML tags and plain text
• HTML documents are also called web pages

HTML Tags

 HTML tags are keywords (tag names) surrounded by angular brackets like <html>
 HTML tags normally come in pairs like and
 The first tag in a pair is the start tag, the second tag is the end tag
 The end tag is written like the start tag, with a forward slash before the tag name
 Start and end tags are also called opening tags and closing tags

HTML Elements

An HTML element is everything from the start tag to the end tag

Source: http://www.devcpgn.blogspot.com Unit1:3

http://www.devcpgn.blogspot.com/

HTML Attributes

Attributes provide additional information about HTML elements.

The <!DOCTYPE> Declaration

The <!DOCTYPE> declaration helps the browser to display a web page correctly.

There are many different documents on the web, and a browser can only display an HTML page
100% correctly if it knows the HTML type and version used.

 The <!DOCTYPE> declaration is not an HTML tag; it is an instruction to the web browser about
what version of HTML the page is written in.

 The <!DOCTYPE> tag does not have an end tag.

Common DOCTYPE Declarations

HTML 5

HTML 4.01

<!DOCTYPE html>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">

HTML Text Formatting Tags HTML "Computer Output" Tags

 Tag Description Tag Description
 Defines bold text <code> Defines computer code text

 Defines emphasized text <kbd> Defines keyboard text

 <i> Defines a part of text in italic <samp> Defines sample computer code

 <small> Defines smaller text <var> Defines a variable

 Defines important text <pre> Defines preformatted text
 <sub> Defines subscripted text

 <sup> Defines superscripted text

 <ins> Defines inserted text

 Defines deleted text

 <mark> Defines marked/highlighted text

HTML Comment Tags

You can add comments to your HTML source by using the following syntax:

<!-- Write your comments here -->

Comments are not displayed by the browser, but they can help document your HTML.

HTML Hyperlinks (Links)

The HTML <a> tag defines a hyperlink. A hyperlink (or link) is a word, group of words, or image that
you can click on to jump to another document. When you move the cursor over a link in a Web page,
the arrow will turn into a little hand.

The most important attribute of the <a> element is the href attribute, which indicates the
link's destination.

By default, links will appear as follows in all browsers:

 An unvisited link is underlined and blue
 A visited link is underlined and purple
 An active link is underlined and red

Example: Visit Me !

 Source: http://www.devcpgn.blogspot.com Unit1:4

file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_b.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_code.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_em.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_kbd.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_i.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_samp.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_small.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_var.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_strong.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_pre.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_sub.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_sup.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_ins.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_del.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_mark.html
http://www.devcpgn.blogspot.com/

HTML Links - The id Attribute

The id attribute can be used to create a bookmark inside an HTML document. Bookmarks are
not displayed in any special way. They are invisible to the reader. Example:

An anchor with an id inside an HTML document:

Useful Tips Section

Create a link to the "Useful Tips Section" inside the same document:

Visit the Useful Tips Section

Or, create a link to the "Useful Tips Section" from another page:

Visit the Useful Tips Section

Html Links- Target attribute: The target attribute specifies where to open the linked document.
Syntax:

<link target="_blank|_self|_parent|_top|framename">

Attribute Value Description

_blank Load in a new window

_self Load in the same frame as it was clicked

_parent Load in the parent frameset

_top Load in the full body of the window

framename Load in a named frame

The HTML <head> Element:

Inside <head> can include scripts, instruct the browser where to find style sheets, provide meta
information, and more. The following tags can be added to the head section: <title>, <style>,
<meta>, <link>, <script>, <noscript>, and <base>.

 Tag Description
 <head> Defines information about the document

 <title> Defines the title of a document

 <base> Defines a default address or a default target for all links on a page

 <link> Defines the relationship between a document and an external resource

 <meta> Defines metadata about an HTML document

 <script> Defines a client-side script

 <style> Defines style information for a document

The HTML <title> Element

The <title> tag defines the title of the document. The <title> element is required in all
HTML/XHTML documents.

The HTML <link> Element

The <link> tag defines the relationship between a document and an external resource.

The <link> tag is most used to link to style sheets:

Source: http://www.devcpgn.blogspot.com Unit1:5

file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_head.asp
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_title.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_base.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_link.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_meta.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_script.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_style.html
http://www.devcpgn.blogspot.com/

The <noscript> tag defines an alternate content for users that have disabled scripts in their browser or
have a browser that doesn't support script. The <noscript> element can be used in both <head> and
<body>.When used inside the <head> element: <noscript> must contain <link>, <style>, and <meta>
elements. The content inside the <noscript> element will be displayed if scripts are not supported, or

are disabled in the user's browser. <script>
Example:

document.write("Hello World!")
</script>
<noscript>Your browser does not support JavaScript!</noscript>

<head>

<link rel="stylesheet" type="text/css" href="mystyle.css">
</head>

The HTML <style> Element

The <style> tag is used to define style information for an HTML document. Inside the <style> element

you specify how HTML elements should render in a browser: head>

<

<style type="text/css">

body {background-color:yellow;}
p {color:blue;}

</style>

</head>

The HTML <meta> Element

Metadata is data (information) about data. The <meta> tag provides metadata about the
HTML document. Metadata will not be displayed on the page, but will be machine parsable.

Meta elements are typically used to specify page description, keywords, author of the document,
last modified, and other metadata. The metadata can be used by browsers (how to display content
or reload page), search engines (keywords), or other web services. <meta> tags always go inside
the <head> element. Example of meta tag

Define keywords for search engines:

<meta name="keywords" content="HTML, CSS, XML, XHTML,
JavaScript"> Define a description of your web page:

<meta name="description" content="Online help for students of IT
"> Define the author of a page:

<meta name="author" content="Devendra
Chapagain”> Refresh document every 30 seconds:

<meta http-equiv="refresh" content="30">

The HTML <script> Element

The <script> tag is used to define a client-side script, such as a JavaScript. Common uses for
JavaScript are image manipulation, form validation, and dynamic changes of content.

HTML <noscript> Tag

HTML Images - The Tag and the Src Attribute
Syntax for defining an image:

 Tag Attributes Definations

Alt specifies an alternate text for an image, if the image cannot be displayed

Width, height Sets width and height of an image

HTML <map> Tag
The <map> tag is used to define a client-side image-map. An image-map is an image with clickable areas.
The <map> element contains a number of <area> elements, that defines the clickable areas in the image map.

Attribute Value Description

name Mapname Required. Specifies the name of an image-map

Example:

<img src="planets.gif" width="145" height="126" alt="Planets"
usemap="#planetmap"> <map name="planetmap">

<area shape="rect" coords="0,0,82,126" href="sun.htm" alt="Sun"> <area
shape="circle" coords="90,58,3" href="mercur.htm" alt="Mercury"> <area
shape="circle" coords="124,58,8" href="venus.htm" alt="Venus"> </map>

HTML Tables:

 Tag Description

 <table> Defines a table

 <th> Defines a header cell in a table

 <tr> Defines a row in a table

 <td> Defines a cell in a table

 <caption> Defines a table caption

 <thead> Groups the header content in a table

 <tbody> Groups the body content in a table

 <tfoot> Groups the footer content in a table

HTML Lists:

The most common HTML lists are ordered and unordered lists:

List properties allow you to:

Example:

<table border="1" style="width:
300px"> <tr>

<td>Jill</td>
<td>Smith</td>
<td>50</td>

</tr>
<tr>

<td>Eve</td>
<td>Jackson</td>
<td>94</td>

</tr>
</table>

→ Set different list item markers for ordered lists
→ Set different list item markers for unordered lists
→ Set an image as the list item marker

Lists may contain:
 - An unordered list. This will list items using plain bullets.
 - An ordered list. This will use different schemes of numbers to list your items.
<dl> - A definition list. This arranges your items in the same way as they are arranged in a dictionary.

Source: http://www.devcpgn.blogspot.com Unit1:7

file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_table.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_th.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_tr.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_td.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_caption.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_thead.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_tbody.html
file:///H:/w3school/w3schools/www.w3schools.com/tags/tag_tfoot.html
http://www.devcpgn.blogspot.com/

Unordered Lists

An unordered list is a collection of related items that have no special order or sequence. This list is created
by using HTML tag. Each item in the list is marked with a bullet.

Example

<html>
<head>

This will produce following result:

<title>HTML Unordered List</title>

</head>

<body> • Beetroot
 • Ginger

Beetroot

• Potato

Ginger

•

Potato Radish

</body>

</html>

The type Attribute

You can use type attribute for tag to specify the type of bullet you like. By default it is a disc. Following
are the possible options:

▪ <ul type="square">
• <ul type="disc"> o
<ul type="circle">

Example:

<html>
<head>
<title>HTML Unordered List</title>
</head>
<body>

<ul type="square">
Beetroot
Ginger
Potato
Radish

</body>
</html>

HTML Ordered Lists

This will produce following result:

▪ Beetroot

▪ Ginger

▪ Potato

▪ Radish

If you are required to put your items in a numbered list instead of bulleted then HTML ordered list will be used.
This list is created by using tag. The numbering starts at one and is incremented by one for each
successive ordered list element tagged with .

Source: http://www.devcpgn.blogspot.com Unit1:8

http://www.devcpgn.blogspot.com/

Example

<html> This will produce following result:

<head>

<title>HTML Ordered List</title> 1. Beetroot

</head> 2. Ginger

<body> 3. Potato

 4. Radish

Beetroot

Ginger

Potato

Radish

</body>

</html>

The type Attribute
You can use type attribute for tag to specify the type of numbering you like. By default it is a number.
Following are the possible options:

<ol type="1"> - Default-Case Numerals.
<ol type="I"> - Upper-Case Numerals.
<ol type="i"> - Lower-Case Numerals.
<ol type="a"> - Lower-Case Letters.
<ol type="A"> - Upper-Case Letters.

The start Attribute

You can use start attribute for tag to specify the starting point of numbering you need. Following are
the possible options:

<ol type="1" start="4">

<ol type="I" start="4">

<ol type="i" start="4">

<ol type="a" start="4">

<ol type="A" start="4">

- Numerals starts with 4.
- Numerals starts with IV.
- Numerals starts with iv.
- Letters starts with d.
- Letters starts with D.

Example
Following is an example where we used <ol type="i" start="4" >

<html>
<head>

<title>HTML Ordered List</title> This will produce following result:

</head> iv. Beetroot

<body> v. Ginger

<ol type="i" start="4"> vi. Potato

Beetroot vii. Radish

Ginger

Potato

Radish

 Source: http://www.devcpgn.blogspot.com Unit1:9

http://www.devcpgn.blogspot.com/

</body>
</html>

HTML Description Lists
The definition/Description list is the ideal way to present a glossary, list of terms, or other name/value list.

Definition List makes use of following three tags.

<dl> - Defines the start of the list
<dt> - A term
<dd> - Term definition
</dl> - Defines the end of the list

A description list is a list of terms/names, with a description of each term/name.

<dl>
Coffee

<dt>Coffee</dt>
- black hot drink

<dd>- black hot drink</dd>
Milk

<dt>Milk</dt>
- white cold drink

<dd>- white cold drink</dd>
</dl>

HTML Colors:

CSS colors are defined using a hexadecimal (hex) notation for the combination of Red, Green, and Blue color
values (RGB). The lowest value that can be given to one of the light sources is 0 (hex 00). The highest value is 255
(hex FF). Color names are also defined in HTML like: Aqua, Black, Blue, Brown, Cyan, Red, Gold, Indigo, etc. Hex
values are written as 3 double digit numbers, starting with a # sign.

Color Color HEX Color RGB

rgb(0,0,0) #000000

#FF0000 rgb(255,0,0)

#00FF00 rgb(0,255,0)

#0000FF rgb(0,0,255)

#FFFF00 rgb(255,255,0)

#00FFFF rgb(0,255,255)

#FF00FF rgb(255,0,255)

#C0C0C0 rgb(192,192,192)

 #FFFFFF rgb(255,255,255)

Source: http://www.devcpgn.blogspot.com Unit1:10

http://www.devcpgn.blogspot.com/

HTML Forms:

HTML forms are used to pass data to a server. An HTML form can contain input elements like text fields,
checkboxes, radio-buttons, submit buttons and more. A form can also contain select lists, textarea, fieldset, and
label elements. HTML Forms are used to select different kinds of user input. A form is defined with a <form> tag.

A form has two duties: to collect information from the user and to send that information to a separate web page
for processing. For example, whenever you submit personal information to a web, you are using a form. Or
whenever you type the keyword into your search engine, you are using a form. Forms are the heart and soul of
the World wide web.

HTML Forms - The Input Element

The most important form element is the <input> element. The <input> element is used to select user
information. An <input> element can vary in many ways, depending on the type attribute. An <input> element
can be of type text field, checkbox, password, radio button, submit button, and more. The most common
input types are given below:

Syntax:
<input type="value">

Attribute value Description

Text A text field

Password A password text field where each keystroke appears as an *

Button A new button other than submit and reset button

Checkbox A checkbox

Radio A radio button

Reset A reset button

Submit A submit button

Select A selection list

TextArea A multiline text entry field

Hidden A field that may contain value but is not displayed within a form

Creating Forms:
A form is created using a <form> tag
<form method=POST action=”samepage url.asp”>

Method:
The method tag can be set either GET or POST

GET: GET method sends the data captured by form element to the web server encoded into URL,
which points to web server. The data captured in form element is appended to the URL.

POST: POST method sends the data captured by form element back to the web server as a separate bit
stream of data. When there is a large amount of data to be send back to the web server, this method
is used.

• If the method attribute is not specified to the <form> </form> tags, the default method used by the
browser to send data back to the web server is GET method.
Action:

Source: http://www.devcpgn.blogspot.com Unit1:11

http://www.devcpgn.blogspot.com/

The action tag specifies what page will process the information entered by the user. The server side
program that process this data can be written in any scripting language that web server
understand. Commonly used server side scripting are: JavaScript, VB Script and ASP.

Text element:

Text element are data entry field used in a HTML forms. Text field accept a single line of text entry.
<input type=”text” name=txt_name value=”some value”>
Events:
Focus()
Blur()
Select()
Change()

Password Element:

JavaScript provides the following event handlers for the text object’s events.
 onFocus()
 onBlur()
 onSelct()
 onChande()

All keystroke for this field are displayed as an asterisk (*). This make password element ideal for accepting
input of confidential information, such as password, bank a/c number etc.
<input type=”password” name=”txt_pwd” value=””>
Events:
Focus()
Blur()
Select()
Change()

Button Element:

JavaScript provides the following event handlers for the password object’s events.
 onFocus()
 onBlur()
 onSelct()
 onChande()

The HTML Button element is a commonly used form object. It is generally used to trigger appropriate form
level processing.
<input type=”button” name=”btn_ok” value=”ok”>

Events: JavaScript provides the following event handlers for the buttonobject’s events.

 onClick()

Click()

Submit Button Element:

The submit button is a special purpose button. The submit button submits the current data held in each data
element to webserver for further processing.
<input type=”Submit” name=”btn_submit” value=”SUBMIT”>

Events: JavaScript provides the following event handlers for the submit object’s events.
Click()

 onClick()

The Reset Button Element:

<input type=”Reset” name=”btn_reset” value=”RESET”>

Events:

 JavaScript provides the following event handlers for the Reset object’s events.
Click()

 onClick()

The checkbox element
<input type=”checkbox” value=”yes” name=”yes/no” CHECKED>

Events:

JavaScript provides the following event handlers for the checkbox object’s events.
 onClick()

Unit1:12 Source: http://www.devcpgn.blogspot.com

http://www.devcpgn.blogspot.com/

Click()

The Radio Element:

<input type= “radio” name=”Radio group name” value=”” CHECKED>

Event JavaScript provides the following event handlers for the radio object’s events.

Clicked() onClicked()

TextArea Element:
The textarea form element provides a way to create a customized size, multiple line text entry.

<textarea rows="4" cols="50">

</textarea>
Event:
Focus()
Blur()
Select()

JavaScript provides the following event handlers for the TextArea object’s events.
 onFocus()
 onBlur()
 onSelect()

The select and Option element:
A select object on HTML form appears as srop-down list or scrollable list of selectable items.
<SELECT Name=”Items”>

<option SELECTED> Computer
<option> Mouse
<option> Keyboard

</SELECT>

If the <SIZE> attribute is set to a value less than the actual choice available in the select list a scrollable list
will be created.

<SELECT name=”items” size=2 MULTIPLE> * to select multiple objects MULTIPLE attribute must be used.

<option SELECTED> Computer

<option> Mouse
<option> Keyboard

</SELECT>

Special Characters:

Certain characters are taken to have special meaning within the context of an HTML document.

Char Number Entity Description

© © © COPYRIGHT SIGN

® ® ® REGISTERED SIGN

€ € € EURO SIGN

™ ™ ™ TRADEMARK

← ← ← LEFTWARDS ARROW

 Source: http://www.devcpgn.blogspot.com Unit1:13

http://www.devcpgn.blogspot.com/

↑ ↑ ↑ UPWARDS ARROW

→ → → RIGHTWARDS ARROW

↓ ↓ ↓ DOWNWARDS ARROW

♠ ♠ ♠ BLACK SPADE SUIT

♣ ♣ ♣ BLACK CLUB SUIT

♥ ♥ ♥ BLACK HEART SUIT

♦ ♦ ♦ BLACK DIAMOND SUIT

 Some Mathematical Symbols:

 Char Number Entity Description

 ∀ ∀ ∀ FOR ALL

 ∂ ∂ ∂ PARTIAL DIFFERENTIAL

 ∃ ∃ ∃ THERE EXISTS

 ∅ ∅ ∅ EMPTY SETS

 ∇ ∇ ∇ NABLA

 ∈ ∈ ∈ ELEMENT OF

 ∉ ∉ ∉ NOT AN ELEMENT OF

 ∋ ∋ ∋ CONTAINS AS MEMBER

 ∏ ∏ ∏ N-ARY PRODUCT

 ∑ ∑ ∑ N-ARY SUMMATION

HTML Div tags:

The <div> tag defines a division or a section in an HTML document. The <div> element is very often used
together with CSS, to layout a web page. By default, browsers always place a line break before and after the
<div> element. However, this can be changed with CSS.

 Attribute Value Description
 align left Not supported in HTML5.

 right Specifies the alignment of the content inside a <div> element
 center

 justify

 <body> <body>
 <div id="container" style="width:500px"> <table width="500">

 <div id="header" style="background-color:#FFA500;"> <tr>

 <h1 style="margin-bottom:0;">Main Title of Web Page</h1></div> <td colspan="2" style="background-color:#FFA500;">

 <h1>Main Title of Web Page</h1>

 <div id="menu" style="background- </td></tr>

 color:#FFD700;height:200px;width:100px;float:left;"> <tr>

 Menu
 <td style="background-color:#FFD700;width:100px;">

 HTML
 Menu
HTML
CSS
JavaScript

 CSS
 </td>

 JavaScript</div> <td style="background-

 color:#EEEEEE;height:200px;width:400px;">

 <div id="content" style="background- Content goes here</td>

 color:#EEEEEE;height:200px;width:400px;float:left;"> </tr>
 Content goes here</div> Source: http://www.devcp gn. <tr> Unit1:14
 blogspot.com

 <div id="footer" style="background-color:#FFA500;clear:both;text- <td colspan="2" style="background-color:#FFA500;text-

file:///H:/w3school/w3schools/www.w3schools.com/tags/att_div_align.html
http://www.devcpgn.blogspot.com/
http://www.devcpgn.blogspot.com/
http://www.devcpgn.blogspot.com/
http://www.devcpgn.blogspot.com/

 align:center;"> align:center;">
 Copyright © www.devcpgn.blogspot.com</div> Copyright ©www.devcpgn.blogspot.com </td>

http://www.devcpgn.blogspot.com/
http://www.devcpgn.blogspot.com/

HTML Tag:

A element used to color a part of a text:
Example: <p>My mother has blue eyes.</p>

Events:

Events can be user actions, such as clicking a mouse button or pressing a key, or system occurrences, such
as running out of memory.

Review of CSS:

Introduction:

Cascading Style Sheets (CSS) is a style sheet language used for describing the look and formatting of a document
written in a markup language. It was intended to allow developers to separate content from design and layout
so that HTML could perform more of the function without worry about the design and layout. It is used to
separate style from content.
Advantages of CSS

CSS saves time − You can write CSS once and then reuse same sheet in multiple HTML pages. You can define a
style for each HTML element and apply it to as many Web pages as you want.

Pages load faster − If you are using CSS, you do not need to write HTML tag attributes every time. Just write one
CSS rule of a tag and apply it to all the occurrences of that tag. So less code means faster download times.

Easy maintenance − To make a global change, simply change the style, and all elements in all the web pages will
be updated automatically.

Source: http://www.devcpgn.blogspot.com Unit1:15

http://www.devcpgn.blogspot.com/

Superior styles to HTML − CSS has a much wider array of attributes than HTML, so you can give a far better
look to your HTML page in comparison to HTML attributes.

Multiple Device Compatibility − Style sheets allow content to be optimized for more than one type of device. By
using the same HTML document, different versions of a website can be presented for handheld devices such as
PDAs and cell phones or for printing.

Global web standards − Now HTML attributes are being deprecated and it is being recommended to use CSS. So
it’s a good idea to start using CSS in all the HTML pages to make them compatible to future browsers.

Platform Independence − The Script offer consistent platform independence and can support latest browsers
as well.

Syntax :

A CSS rule has two main parts: a selector and one or more declarations. Selector is normally the HTML
element you want to style and each declaration consists of a property and value. The property is the style
attribute we want to use and each property has a value associated with it.

* For Detail CSS

Properties reference

to CSS.doc

Selector − A selector is an HTML tag at which a style will be applied. This could be any tag like <h1> or <table>
etc.
Property - A property is a type of attribute of HTML tag. Put simply, all the HTML attributes are converted into
CSS properties. They could be color, border etc.
Value - Values are assigned to properties. For example, color property can have value either red or #F1F1F1 etc.

Example:
p {color:red;text-align:center;}

Inserting CSS

We can use style sheets in three different ways in our HTML document. CSS can be added to HTML in the
following ways:

o Inline - using the style attribute in HTML elements

o Internal - using the <style> element in the <head>
section o External - using an external CSS file

The preferred way to add CSS to HTML, is to put CSS syntax in separate CSS files.

When there more than one style specified for an HTML element than inline style (inside an HTML element) has
the highest priority, which means that it will override a style defined inside the <head> tag, or in an external
style sheet, or in a browser (a default value).

* If the link to the external style sheet is placed after the internal style sheet in HTML <head>, the external
style sheet will override the internal style sheet!

Inline Styles

Source: http://www.devcpgn.blogspot.com Unit1:16

http://www.devcpgn.blogspot.com/

An inline style can be used if a unique style is to be applied to one single occurrence of an element. To use inline
styles, use the style attribute in the relevant tag. The style attribute can contain any CSS property. The example
below shows how to change the text color and the left margin of a paragraph:

<p style="color:blue;margin-left:20px;">This is a paragraph.</p>

Examples:

<html>
<body style="background-color:yellow;">

<h2 style="background-color:red; text-align:center;">This is a
heading</h2> <p style="background-color:green;">This is a paragraph.</p>
<h1 style="font-family:verdana;">A heading</h1>
<p style="font-family:arial;color:red;font-size:20px;">A paragraph.</p>
</body>
</html>

Internal Style Sheet

An internal style sheet can be used if one single document has a unique style. Internal styles are defined in
the <head> section of an HTML page, by using the <style> tag, like this:

<head>
<style>
body {background-color:yellow;}
p {color:blue;}
</style>
</head>

External Style Sheet

An external style sheet is ideal when the style is applied to many pages. With an external style sheet, you can
change the look of an entire Web site by changing one file. Each page must link to the style sheet using the
<link> tag. The <link> tag goes inside the <head> section: <head>

<link rel="stylesheet" type="text/css" href="mystyle.css">
</head>

CSS Comments
Comments are used to explain your code, and may help you when you edit the source code at a later date.
Comments are ignored by browsers. A CSS comment begins with "/*", and ends with "*/"
Eg. /* this is a css comment */

ID and Class Selectors

The Class Selectors

Source: http://www.devcpgn.blogspot.com Unit1:17

http://www.devcpgn.blogspot.com/

You can define style rules based on the class attribute of the elements. All the elements having that class will be
formatted according to the defined rule.
.black {

color: #000000;
}
This rule renders the content in black for every element with class attribute set to black in our document.
The ID Selectors
You can define style rules based on the id attribute of the elements. All the elements having that id will be
formatted according to the defined rule.
#black {

color: #000000;
}
This rule renders the content in black for every element with id attribute set to black in our document.

Grouping and Nesting Selectors

Pseudo Classes and Elements

Client-side Programming (Review of JavaScript):

Introduction to JavaScript:

JavaScript is a Scripting Language. A scripting language is a lightweight programming language. JavaScript
code can be inserted into any HTML page, and it can be executed by all types of web browsers.

JavaScript is used to make web pages interactive. It runs on your visitor's computer and doesn't require constant
downloads from your website. JavaScript and Java are completely different languages, both in concept and
design.

 Unlike HTML, JavaScript is case sensitive - therefore watch your capitalization closely when you write JavaScript
statements, create or call variables, objects and functions.

Source: http://www.devcpgn.blogspot.com Unit1:18

http://www.devcpgn.blogspot.com/

Why JavaScript?
• JavaScript can be used to create cookies

• Transmitting information about the user's reading habits and browsing activities to various websites.

Web pages frequently do this for web analytics, ad tracking, personalization or other purposes.
• Interactive content, for example games, and playing audio and video

• Validating input values of a Web form to make sure that they are acceptable before being submitted to

the server.

• Loading new page content or submitting data to the server via AJAX without reloading the page
(AJAX: Asynchronous JavaScript and XML: Using AJAX, webpages get updated in the background
without reloading and refreshing the webpage)

• Animation of page elements, fading them in and out, resizing them, moving them, etc.

The HTML <script> tag is used to insert a JavaScript into an HTML page. A simple example is given below:
<html>

<body> The example below shows how to add HTML tags to the JavaScript:

<html> <script type="text/javascript">
<body>

document.write("Hello World!");
<script type="text/javascript">

</script>
document.write("<h1>Hello World!</h1>");

</body>
</script>

</html> </body>

 </html>

JavaScript Comments

JavaScript comments can be used to explain JavaScript code, and to make it more readable. It can also be used
to prevent execution, when testing alternative code.

Single Line Comments

Single line comments start with //.
Any text between // and the end of the line, will be ignored by JavaScript (will not be executed).
The given example uses a single line comment at the end of each line, to explain the code:

var x = 5; // Declare x, give it the value of 5
var y = x + 2; // Declare y, give it the value of x + 2

Multi-line Comments

Multi-line comments start with /* and end with */. Any text between /* and */ will be ignored by
JavaScript. /*
This is the example of
Multiline comment
*/

Source: http://www.devcpgn.blogspot.com Unit1:19

http://www.devcpgn.blogspot.com/

JavaScript Statements:

JavaScript statements are "instructions" to be "executed" by the web browser. This JavaScript statement
tells the browser to write "Hello World" to the web page:

document.write("Hello World");

The semicolon is optional (according to the JavaScript standard), and the browser is supposed to
interpret the end of the line as the end of the statement.

JavaScript Code:

JavaScript code (or just JavaScript) is a sequence of JavaScript statements. Each statemen is executed by the
browser in the sequence they are written. Following example will write a heading and two paragraphs to a
web page:

Example
<script type="text/javascript">
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

JavaScript Code Blocks:

JavaScript statements can be grouped together in code blocks, inside curly brackets {...}. The purpose of code
blocks is to define statements to be executed together. One place you will find statements grouped together in
blocks, are in JavaScript functions:

Example
function myFunction() {

document.write("hello");
document.write("Dev");

}

JavaScript Keywords

JavaScript statements often start with a keyword to identify the JavaScript action to be performed. Some of the
JavaScript keywords or reserved words are:

abstract default float

boolean delete for

break do function

byte double goto

case else if

catch enum implements

char export import

class extends in

const false instanceof

continue final int

debugger finally interface

 Source: http://www.devcpgn.blogspot.com Unit1:20

http://www.devcpgn.blogspot.com/

long short true

native static try

new super typeof

null switch var

package synchronized void

private this volatile

protected throw while

public throws with

return transient

JavaScript Variables:

As with algebra, JavaScript variables are used to hold values or expressions. A variable can have a short
name, like x, or a more descriptive name, like lastname.

Rules for JavaScript variable names:

→ Variable names are case sensitive (a and A are two different variables)
→ Variable names must begin with a letter or the underscore character
→ Names can contain letters, digits, underscores, and dollar signs.
→ Names must begin with a letter
→ Names can also begin with $ and _
→ Reserved words (like JavaScript keywords) cannot be used as names

You can declare JavaScript variables with the var statement:

Example var x = 5; var y = 6; var z = x + y;

JavaScript Data types

One of the most fundamental characteristics of a programming language is the set of data types it supports.
These are the type of values that can be represented and manipulated in a programming language. JavaScript
variables can hold many data types: numbers, strings, arrays, objects and more:

Example:

var length = 10;
var firstName = "Kamal";
var colors = ["Red", "Green", "Blue"];
var x = {firstName:"Binod", lastName:"Aryal"};

// Number
// String

// Array
// Object

JavaScript has dynamic types. This means that the same variable can be used as different types:

var x; // Now x is undefined

var x = 10; // Now x is a Number

var x = "Kamal"; // Now x is a String

Source: http://www.devcpgn.blogspot.com Unit1:21

Or simply you can write
X=5;

http://www.devcpgn.blogspot.com/

JavaScript Operators:

1. Arithmetic Operators
2. Comparison Operators
3. Logical (or Relational) Operators
4. Assignment Operators
5. Conditional (or ternary) Operators

• Arithmetic Operators

Arithmetic operators are used to perform arithmetic on numbers (literals or variables).

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

Example:

<html>

<body>
<script type="text/javascript">

var a = 22;b = 5;
var c = "Test";
var linebreak = "
";

document.write("a + b = ");
result = a + b;
document.write(result);
document.write(linebreak);

document.write("a - b = ");
document.write(a-b);
document.write(linebreak);

document.write("a / b = ");
result = a / b;
document.write(result);
document.write(linebreak);

document.write("a % b = ");
result = a % b;

document.write(result);
document.write(linebreak);

document.write("a + b + c = ");
result = a + b + c;
document.write(result);
document.write(linebreak);

a = a++;
document.write("a++ = ");
result = a++;
document.write(result);
document.write(linebreak);

b = b--; document.write("b-

- = "); result = b--;

document.write(result);

document.write(linebreak);

</script>
</body>

</html>

Source: http://www.devcpgn.blogspot.com Unit1:22

http://www.devcpgn.blogspot.com/

• JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

Operator Example Same As Example2

= x = y x = y var x = 10;

x += 5; += x += y x = x + y

x -= 5;

-= x -= y x = x – y txt1 = "Dev";

txt2 = "Cpgn"; *= x *= y x = x * y

txt3 = txt1 + " " + txt2;
/= x /= y x = x / y

%= x %= y x = x % y

• JavaScript Comparison Operator

Operator Description Example (let x=3)

== equal to X==3 True

=== is exactly equal to value and type X===3 True

!= not equal X!=3 False

!== not equal value or not equal type X!==5 True

> greater than x>5 False

< less than X<5 True

>= greater than or equal to x>=5 False

<= less than or equal to X<=2 True

• Logical Operators:

Logical operators are used to determine the logic between variables or values.

Operator Description Example (let x=5 and y=2)

&& AND (x<7 && y>1) is true

|| OR (x<7 || y>5) is true

! NOT !(x==y) is true

• Conditional Operator (? :)

The conditional operator first evaluates an expression for a true or false value and then executes one of the
two given statements depending upon the result of the evaluation.

Example:

<html>
<body>

<script type="text/javascript">
var a = 30;
var b = 20;
//var linebreak = "
";

Source: http://www.devcpgn.blogspot.com Unit1:23

http://www.devcpgn.blogspot.com/

result = (a > b) ? "A is greater" : "B is greater ";
document.write(result);
document.write("
");

</script>
</body>

</html>

JavaScript Functions:

Like any other advanced programming language, JavaScript also supports all the features necessary to write
modular code using functions. A JavaScript function is a block of code designed to perform a particular task.

JavaScript allows us to write our own functions as well.

Function Definition

Before we use a function, we need to define it. The most common way to define a function in JavaScript is by
using the function keyword, followed by a unique function name, a list of parameters (that might be empty),
and a statement block surrounded by curly braces.

Syntax:

<script type="text/javascript">

function functionname(parameter-list)
{

statements
}

</script>

Example:

<script type="text/javascript">

function sayHello()
{

alert("Hello there");
}

</script>

Calling a Function

To invoke a function somewhere later in the script, you would simply need to write the name of that function as
shown in the following code.

<html>

<head>

<script type="text/javascript">

function sayHello()
{

document.write ("Hello there!");
}

</script>

Source: http://www.devcpgn.blogspot.com Unit1:24

http://www.devcpgn.blogspot.com/

</head>
<body>

<p>Click the button to call the function</p>
<form>

<input type="button" onclick="sayHello()" value="Say Hello">

</form>
</body>

</html>

Function Parameters

There is a facility to pass different parameters while calling a function. These passed parameters can be
captured inside the function and any manipulation can be done over those parameters. A function can
take multiple parameters separated by comma.

<html>

<head>

<script type="text/javascript">

function sayHello(name, age)
{

document.write (name + " is " + age + " years old.");
}

</script>

</head>
<body>

<form>

<input type="button" onclick="sayHello('Dev', 25)" value="Say
Hello"> </form>

</body>
</html>

The return Statement

A JavaScript function can have an optional return statement. This is required if you want to return a value from
a function. This statement should be the last statement in a function.

For example, you can pass two numbers in a function and then you can expect the function to return their
multiplication in your calling program.

<html>
<head>

<script type="text/javascript">
function concatenate(first, last)
{

var full;
full = first + last;
return full;

}

function secondFunction()
{

Source: http://www.devcpgn.blogspot.com Unit1:25

http://www.devcpgn.blogspot.com/

var result;
result = concatenate('Ram', 'Sita');
document.write (result);

}
</script>

</head>
<body>

<form>

<input type="button" onclick="secondFunction()" value="Call
Function"> </form>

</body>
</html>

JavaScript - Dialog Boxes

JavaScript supports three important types of dialog boxes. These dialog boxes can be used to raise and alert,
or to get confirmation on any input or to have a kind of input from the users.

1) Alert Dialog Box

An alert dialog box is mostly used to give a warning message to the users. For example, if one input field
requires to enter some text but the user does not provide any input, then as a part of validation, you can use
an alert box to give a warning message.

Nonetheless, an alert box can still be used for friendlier messages. Alert box gives only one button "OK" to
select and proceed.

Example:

<html>

<head>
<script type="text/javascript">

function Warn() {
alert ("This is a warning message!");
document.write ("This is a warning message!");

}
</script>

</head>
<body>

<form>

<input type="button" value="Click Me" onclick="Warn();" />
</form>

</body>
</html>

2) Confirmation Dialog Box

A confirmation dialog box is mostly used to take user's consent on any option. It displays a dialog box with two
buttons: Ok and Cancel.

If the user clicks on the OK button, the window method confirm() will return true. If the user clicks on the Cancel
button, then confirm() returns false. You can use a confirmation dialog box as follows.

<html>

Source: http://www.devcpgn.blogspot.com Unit1:26

http://www.devcpgn.blogspot.com/

<head>

<script type="text/javascript">

function getConfirmation(){
var retVal = confirm("Do you want to continue ?");
if(retVal == true){

document.write ("User wants to continue!");
return true;

}
else{

Document.write ("User does not want to continue!");
return false;

}
}

</script>

</head>
<body>

<form>

<input type="button" value="Click Me" onclick="getConfirmation();"
/> </form>

</body>

</html>

3) Prompt Dialog Box

The prompt dialog box is very useful when you want to pop-up a text box to get user input. Thus, it enables you
to interact with the user. The user needs to fill in the field and then click OK.

This dialog box is displayed using a method called prompt() which takes two parameters: (i) a label which you
want to display in the text box and (ii) a default string to display in the text box.

This dialog box has two buttons: OK and Cancel. If the user clicks the OK button, the window method prompt()
will return the entered value from the text box. If the user clicks the Cancel button, the window method
prompt() returns null.

Example:

<html>

<head>

<script type="text/javascript">

<!--
function getValue(){

var retVal = prompt("Enter your name : ", "your name here");
document.write("You have entered : " + retVal);

}
//-->

</script>

</head>

<body>

<p>Click the following button to see the result: </p>

<form>

Source: http://www.devcpgn.blogspot.com Unit1:27

http://www.devcpgn.blogspot.com/

<input type="button" value="Click Me" onclick="getValue();"
/> </form>

</body>

</html>

JavaScript - Events

What is an Event?

JavaScript's interaction with HTML is handled through events that occur when the user or the
browser manipulates a page.

When the page loads, it is called an event. When the user clicks a button, that click too is an event. Other
examples include events like pressing any key, closing a window, resizing a window, etc. Developers can use
these events to execute JavaScript coded responses, which cause buttons to close windows, messages to be
displayed to users, data to be validated, and virtually any other type of response imaginable.

HTML 5 Standard Events

The standard HTML 5 events are listed below: Here script indicates a JavaScript function to be executed against
that event.

Attribute Value Description

Offline script Triggers when the document goes offline

Onabort script Triggers on an abort event

Onafterprint script Triggers after the document is printed

Onbeforeonload script Triggers before the document loads

Onbeforeprint script Triggers before the document is printed

Onblur script Triggers when the window loses focus

Oncanplay script Triggers when media can start play, but might has to stop for buffering

Oncanplaythrough script Triggers when media can be played to the end, without stopping for

 buffering

Onchange script Triggers when an element changes

Onclick script Triggers on a mouse click

Oncontextmenu script Triggers when a context menu is triggered

Ondblclick script Triggers on a mouse double-click

Ondrag script Triggers when an element is dragged

Ondragend script Triggers at the end of a drag operation

Ondragenter script Triggers when an element has been dragged to a valid drop target

Ondragleave script Triggers when an element is being dragged over a valid drop target

Ondragover script Triggers at the start of a drag operation

Ondragstart script Triggers at the start of a drag operation

Ondrop script Triggers when dragged element is being dropped

Ondurationchange script Triggers when the length of the media is changed

Onemptied script Triggers when a media resource element suddenly becomes empty.

Onended script Triggers when media has reach the end

Onerror script Triggers when an error occur

Onfocus script Triggers when the window gets focus

 Source: http://www.devcpgn.blogspot.com Unit1:28

http://www.devcpgn.blogspot.com/

Onformchange script Triggers when a form changes

Onforminput script Triggers when a form gets user input

Onhaschange script Triggers when the document has change

Oninput script Triggers when an element gets user input

Oninvalid script Triggers when an element is invalid

Onkeydown script Triggers when a key is pressed

Onkeypress script Triggers when a key is pressed and released

Onkeyup script Triggers when a key is released

Onload script Triggers when the document loads

Onloadeddata script Triggers when media data is loaded

Onloadedmetadata script Triggers when the duration and other media data of a media element

 is loaded

Onloadstart script Triggers when the browser starts to load the media data

Onmessage script Triggers when the message is triggered

Onmousedown script Triggers when a mouse button is pressed

Onmousemove script Triggers when the mouse pointer moves

Onmouseout script Triggers when the mouse pointer moves out of an element

Onmouseover script Triggers when the mouse pointer moves over an element

Onmouseup script Triggers when a mouse button is released

Onmousewheel script Triggers when the mouse wheel is being rotated

Onoffline script Triggers when the document goes offline

Onoine script Triggers when the document comes online

Ononline script Triggers when the document comes online

Onpagehide script Triggers when the window is hidden

Onpageshow script Triggers when the window becomes visible

Onpause script Triggers when media data is paused

Onplay script Triggers when media data is going to start playing

Onplaying script Triggers when media data has start playing

Onpopstate script Triggers when the window's history changes

Onprogress script Triggers when the browser is fetching the media data

Onratechange script Triggers when the media data's playing rate has changed

Onreadystatechange script Triggers when the ready-state changes

Onredo script Triggers when the document performs a redo

Onresize script Triggers when the window is resized

Onscroll script Triggers when an element's scrollbar is being scrolled

Onseeked script Triggers when a media element's seeking attribute is no longer true,

 and the seeking has ended

Onseeking script Triggers when a media element's seeking attribute is true, and the

 seeking has begun

Onselect script Triggers when an element is selected

Onstalled script Triggers when there is an error in fetching media data

Onstorage script Triggers when a document loads

Onsubmit script Triggers when a form is submitted

Onsuspend script Triggers when the browser has been fetching media data, but stopped

 before the entire media file was fetched

Ontimeupdate script Triggers when media changes its playing position

Onundo script Triggers when a document performs an undo

Onunload script Triggers when the user leaves the document

Onvolumechange script Triggers when media changes the volume, also when volume is set to

 "mute"

 Source: http://www.devcpgn.blogspot.com Unit1:29

http://www.devcpgn.blogspot.com/

Onwaiting script Triggers when media has stopped playing, but is expected to resume

Some Examples:

onclick Event

This is the most frequently used event type which occurs when a user clicks the left button of his mouse.
You can put your validation, warning etc., against this event type.

<html>

<head>
<script type="text/javascript">

function sayHello() {
alert("Hello World")

}
</script>

</head>
<body>

<form>

<input type="button" onclick="sayHello()" value="Say Hello"

/> </form>

</body>

</html>

Error Handling

Error can occur due to wrong input, from a user, or from an Internet server. It can be syntax error or
any unexpected things. There are three types of errors in programming:

(a) Syntax Errors
(b) Runtime Errors
(c) Logical Errors

Syntax Errors

Syntax errors, also called parsing errors are typically coding errors or typing mistakes made by the programmer.
Syntax error occur at compile time in traditional programming languages and at interpret time in JavaScript. For
example, the following line causes a syntax error because it is missing a closing parenthesis.

<script type="text/javascript">

Document.write(“Hello ”;

</script>

Runtime Errors

Runtime errors, also called exceptions, occur during execution (after compilation/interpretation).

Source: http://www.devcpgn.blogspot.com Unit1:30

http://www.devcpgn.blogspot.com/

For example, the following line causes a runtime error because here the syntax is correct, but at runtime, it
is trying to call a method that does not exist.

<script type="text/javascript">

window.printme();

</script>

Exceptions also affect the thread in which they occur, allowing other JavaScript threads to continue normal
execution.

Logical Errors

Logic errors can be the most difficult type of errors to track down. These errors are not the result of a syntax or
runtime error. Instead, they occur when you make a mistake in the logic that drives your script and you do not
get the result you expected.

You cannot catch those errors, because it depends on your business requirement what type of logic you want
to put in your program.

The try...catch...finally Statement

JavaScript implements the try...catch...finally construct as well as the throw operator to handle exceptions. You
can catch programmer-generated and runtime exceptions, but you cannot catch JavaScript syntax errors. Here is
the try...catch...finally block syntax –

<script type="text/javascript">

try {
// Code to
run [break;]

}

catch (e) {

// Code to run if an exception
occurs [break;]

}

[finally {

// Code that is always executed regardless of
// an exception occurring

}]
</script>

The try block must be followed by either exactly one catch block or one finally block (or one of both). When
an exception occurs in the try block, the exception is placed in “e” and the catch block is executed. The
optional finally block executes unconditionally after try/catch.

The given below example describes the try catch and finally

block <html>
<head>

<script type="text/javascript">

function myFunc()

{

var a = 100;

try {

alert("Value of variable a is : " + a);

}

Source: http://www.devcpgn.blogspot.com

Unit1:31

http://www.devcpgn.blogspot.com/

catch (e) {
alert("Error: " + e.description);

}

finally {

alert("Finally block will always execute!");

}

}

</script>

</head>
<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();"

/> </form>

</body>
</html>

How to get the value of textbox in JavaScript

Syntax:

var x =
document.getElementById("myText").value; or
var x = document.FormName.TextFieldName.value;

Example:

<html>
<head>
<title>Get value of text box in Javascript</title>

<script language="javascript" type="text/javascript">
function GetValue()
{
var name = document.getElementById('txtUserName').value;
var address=document.MyForm.txtaddress.value;
alert(name);
alert(address);
}
</script>
</head>
<body>
<h1>Get Value of Text Box in JavacScript</h1>

<form name="MyForm">
<input id="txtUserName" type="text" />

<input id="txtaddress" type="text" name="txtUser"/>

<input type="button" value="Btn1" onclick="GetValue()" />
</form>
</body>

Source: http://www.devcpgn.blogspot.com Unit1:32

http://www.devcpgn.blogspot.com/

</html>

Form Validation

JavaScript provides a way to validate form's data on the client's computer before sending it to the web server.

Form validation is the process of checking that a form has been filled in correctly before it is processed. For

example, if your form has a box for the user to type their email address, you might want your form handler to

check that they've filled in their address before you deal with the rest of the form. You can check your form from

either server side or client side. Client side validation is easier and simpler than server side validation. Client side

form validation is usually done using JavaScript. You can validate your form against the following.

- Checking for empty text boxes
- Numbers validation
- Check for letters
- Check the selection made or not
- Email validation
- Password Validation

Here is a simple example of validation.

<html>

<head>
<title>Form Validation</title>

<script type="text/javascript">

// Form validation code will come here.

function validate()

{

if(document.myForm.Name.value == "")

{

alert("Please provide your name!");

document.myForm.Name.focus() ; return

false;

}

if(document.myForm.EMail.value == "")

{

alert("Please provide your Email!");

document.myForm.EMail.focus() ;

return false;

}

if(document.myForm.Zip.value == "" ||

Source: http://www.devcpgn.blogspot.com Unit1:33

http://www.devcpgn.blogspot.com/

isNaN(document.myForm.Zip.value) ||

document.myForm.Zip.value.length != 5)

{

alert("Please provide a zip in the format #####.");

document.myForm.Zip.focus() ;

return false;

}

if(document.myForm.Country.value == "-1")

{

alert("Please provide your country!");

return false;

}

return(true);

}

</script>

</head>

<body>
<form name="myForm" onsubmit="return(validate());">

<table cellspacing="2" cellpadding="2" border="1">

<tr>
<td align="right">Name</td>
<td><input type="text" name="Name" /></td>

</tr>

<tr>
<td align="right">EMail</td>
<td><input type="text" name="EMail" /></td>

</tr>

<tr>
<td align="right">Zip Code</td>
<td><input type="text" name="Zip" /></td>

</tr>

<tr>
<td align="right">Country</td>
<td>

<select name="Country">
<option value="-1" selected>[choose
yours]</option> <option value="1">USA</option>
<option value="2">UK</option>
<option value="3">INDIA</option>

</select>
</td>

</tr>

<tr>
<td align="right"></td>
<td><input type="submit" value="Submit" /></td>

</tr>

</table>
</form>

Source: http://www.devcpgn.blogspot.com Unit1:34

http://www.devcpgn.blogspot.com/

</body>
</html>

Cookies

Cookies are data, stored in small text files, on your computer. When a web server has sent a web page to a
browser, the connection is shut down, and the server forgets everything about the user. Cookies were invented
to solve the problem "how to remember information about the user":

→ When a user visits a web page, his name can be stored in a cookie.
→ Next time the user visits the page, the cookie "remembers" his name.

Cookies are saved in name-value pairs like:
Username=Dolly

When a browser request a web page from a server, cookies belonging to the page is added to the request. This
way the server gets the necessary data to "remember" information about users.

Create a Cookie with JavaScript
JavaScript can create cookies, read cookies, and delete cookies with the property document.cookie.
With JavaScript, a cookie can be created like this:
document.cookie="username=Dev cpgn";

You can also add an expiry date (in UTC or GMT time). By default, the cookie is deleted when the browser is
closed.

Name Description

Name=”Value” Specifies the name of the cookie Required

PATH=”path” Specifies the path of the URLs for which the cookie is valid. If the Optional
 URL matches both the PATH and the DOMAIN, then the cookie is

 sent to the server in the request in the request header. (If left

 unset , the value of the PATH is the same as the document that

 set the cookie). This may be blank if you want to retrieve the

 cookie from any directory or page.

EXPIRES=date Specifies the expiry date of the cookie. After this date the cookie Optional
 will no longer be stored by the client or sent to the server. If this

 is blank the cookie will expires when browser is closed.

DOMAIN=domain Specifies the domain portion of the URLs for which the cookie is Optional
 valid. The default value for this attribute is the domain of the

 current document setting the cookie.

SECURE Specifies that the cookie should only be transmitted over a secure Optional

 over a secure link

Example:
document.cookie="username=Dev cpgn; expires=Thu, 18 Dec 2013 12:00:00 GMT; path=/";

Read a Cookie with JavaScript
With JavaScript, cookies can be read like this:
var x = document.cookie;

* document.cookie will return all cookies in one string much like: cookie1=value; cookie2=value; cookie3=value;

Delete a Cookie with JavaScript

Source: http://www.devcpgn.blogspot.com Unit1:35

http://www.devcpgn.blogspot.com/

Deleting a cookie is very simple. Just set the expires parameter to a passed date:

document.cookie = "username=; expires=Thu, 01 Jan 1970 00:00:00 GMT"; Note

that you don't have to specify a cookie value when you delete a cookie.

Creating Cookies Example:

<html>

<head>

<script type="text/javascript">

function WriteCookie()
{

if(document.myform.customer.value == ""){
alert("Enter some value!");
return;

}

cookievalue= escape(document.myform.customer.value) + ";";
document.cookie="name=" + cookievalue;
document.write ("Setting Cookies : " + "name=" + cookievalue);

}
</script>

</head>

<body>

<form name="myform" action="">

Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie"
onclick="WriteCookie();"/> </form>

</body>

</html>

Reading Cookies Example:

<html>

<head>

<script type="text/javascript">

function ReadCookie()
{

var allcookies = document.cookie;
document.write ("All Cookies : " + allcookies);

// Get all the cookies pairs in an array

cookiearray = allcookies.split(';');

// Now take key value pair out of this array
for(var i=0; i<cookiearray.length; i++){

name = cookiearray[i].split('=')[0];

value = cookiearray[i].split('=')[1];
document.write ("Key is : " + name + " and Value is : " + value);

}
}

</script>

</head>

Source: http://www.devcpgn.blogspot.com Unit1:36

http://www.devcpgn.blogspot.com/

<body>

<form name="myform" action="">

<p> click the following button and see the result:</p>

<input type="button" value="Get Cookie"
onclick="ReadCookie()"/> </form>

</body>

</html>

Setting Cookie Expiry Date:

<html>

<head>

<script type="text/javascript">

function WriteCookie()
{

var now = new Date();
now.setMonth(now.getMonth() + 1);
cookievalue = escape(document.myform.customer.value) + ";"

document.cookie="name=" + cookievalue;
document.cookie = "expires=" + now.toUTCString() + ";"
document.write ("Setting Cookies : " + "name=" + cookievalue);

}
</script>

</head>
<body>

<form name="formname" action="">

Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie"
onclick="WriteCookie()"/> </form>

</body>

</html>

Source: http://www.devcpgn.blogspot.com Unit1:37

http://www.devcpgn.blogspot.com/

