
4 Control Statements in C

C provides two types of Control Statements

• Branching Structure

• Looping Structure

4.1 Branching Structure

Branching is deciding what actions to take and looping is deciding how many times to
take a certain action.Decision making structures require that the programmer specifies
one or more conditions to be evaluated or tested by the program, along with a statement
or statements to be executed if the condition is determined to be true, and optionally,
other statements to be executed if the condition is determined to be false. Show below is
the general form of a typical decision making structure found in most of the programming
languages.

Figure 3: FlowChart Control Statement

4.1.1 if Statement

An if statement consists of a Boolean expression followed by one or more statements.If
the Boolean expression evaluates to true, then the block of code inside the ’if’ statement
will be executed. If the Boolean expression evaluates to false, then the first set of code
after the end of the ’if’ statement (after the closing curly brace) will be executed. C
programming language assumes any non-zero and non-null values as true and if it is
either zero or null, then it is assumed as false value.

1 #include <s t d i o . h>
2 int main () {
3 int a = 10 ;
4 i f (a < 20) {
5 p r i n t f (”a i s l e s s than 20\n”) ;
6 }
7 p r i n t f (” value o f a i s : %d\n” , a) ;
8 return 0 ;
9 }

20

BCANOTESNEPAL.com

Figure 4: if statement flowchart

4.1.2 if..else Statement

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.If the Boolean expression evaluates to true, then the if block
will be executed,otherwise, the else block will be executed.C programming language
assumes any non-zero and non-null values as true,and if it is either zero or null, then it
is assumed as false value.

Figure 5: If else Statement

1 #include <s t d i o . h>
2 int main () {
3 int a = 100 ;
4 i f (a == 10) {
5 p r i n t f (”Value o f a i s 10\n”) ;
6 }
7 else i f (a == 20) {
8 p r i n t f (”Value o f a i s 20\n”) ;
9 }

10 else i f (a == 30) {
11 p r i n t f (”Value o f a i s 30\n”) ;
12 }
13 else {

21

BCANOTESNEPAL.com

14 p r i n t f (”None o f the va lue s i s matching\n”) ;
15 }
16 p r i n t f (”Exact value o f a i s : %d\n” , a) ;
17 return 0 ;
18 }

4.1.3 if..else if..else Statement

An if statement can be followed by an optional else if...else statement, which is very
useful to test various conditions using single if...else if statement.When using if...else
if...else statements, there are few points to keep in mind:

• An if can have zero or one else’s and it must come after any else if’s.

• An if can have zero to many else if’s and they must come before the else.

• Once an else if succeeds, none of the remaining else if’s or else’s will be tested.

4.1.4 Nested if Statement

It is always legal in C programming to nest if-else statements, which means you can use
one if or else if statement inside another if or else if statement(s).

4.1.5 Switch Statement

A switch statement allows a variable to be tested for equality against a list of values.
Each value is called a case, and the variable being switched on is checked for each switch
case.The following rules apply to a switch statement:

• The expression used in a switch statement must have an integral or enumerated
type, or be of a class type in which the class has a single conversion function to
an integral or enumerated type.

• You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as the variable in
the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements following
that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow of control
will fall through to subsequent cases until a break is reached.

• A switch statement can have an optional default case, which must appear at the
end of the switch. The default case can be used for performing a task when none
of the cases is true. No break is needed in the default case.

1 #include <s t d i o . h>
2 int main () {
3 /∗ l o c a l v a r i a b l e d e f i n i t i o n ∗/
4 char grade = ’B ’ ;
5 switch (grade) {

22

BCANOTESNEPAL.com

Figure 6: switch statement flowchart

6 case ’A ’ :
7 p r i n t f (” Exce l l en t !\n”) ;
8 break ;
9 case ’B ’ :

10 case ’C ’ :
11 p r i n t f (”Well done\n”) ;
12 break ;
13 case ’D ’ :
14 p r i n t f (”You passed \n”) ;
15 break ;
16 case ’F ’ :
17 p r i n t f (” Better t ry again \n”) ;
18 break ;
19 default :
20 p r i n t f (” I n v a l i d grade \n”) ;
21 }
22 p r i n t f (”Your grade i s %c\n” , grade) ;
23 return 0 ;
24 }

4.1.6 The ? : Operator

Exp1? Exp2 : Exp3 is the general structure of the ? : operator.

The value of a ? expression is determined like this:

• Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of
the entire ? expression.

• If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the
expression.

23

BCANOTESNEPAL.com

4.2 Looping Structure

Programming languages provide various control structures that allow for more compli-
cated execution paths. A loop statement allows us to execute a statement or group
of statements multiple times.C programming language provides the following types of
loops to handle looping requirements.

• while loop

• do while loop

• for loop

4.2.1 while loop

A while loop in C programming repeatedly executes a target statement as long as a
given condition is true.

1 while (cond i t i on)
2 {
3 statement (s) ;
4 }

Here, statement(s) may be a single statement or a block of statements. The condition
may be any expression, and true is any nonzero value. The loop iterates while the
condition is true. When the condition becomes false, the program control passes to
the line immediately following the loop.Here, the key point to note is that a while loop
might not execute at all. When the condition is tested and the result is false, the loop
body will be skipped and the first statement after the while loop will be executed. flow
chart and program remaining

Figure 7: while loop flowchart

24

BCANOTESNEPAL.com

4.2.2 for loop

A for loop is a repetition control structure that allows you to efficiently write a loop
that needs to execute a specific number of times.

1 for (i n i t ; c ond i t i on ; increment) {
2 statement (s) ;
3 }

1. The init step is executed first, and only once. This step allows you to declare and
initialize any loop control variables. You are not required to put a statement here,
as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If
it is false, the body of the loop does not execute and the flow of control jumps to
the next statement just after the ’for’ loop.

3. Next, the condition is evaluated. If it is true, the body of the loop is executed. If
it is false, the body of the loop does not execute and the flow of control jumps to
the next statement just after the ’for’ loop.

4. The condition is now evaluated again. If it is true, the loop executes and the
process repeats itself (body of loop, then increment step, and then again condition).
After the condition becomes false, the ’for’ loop terminates.

Figure 8: for loop flowchart

4.2.3 do while loop

Unlike for and while loops, which test the loop condition at the top of the loop, the
do...while loop in C programming checks its condition at the bottom of the loop.A

25
BCANOTESNEPAL.com

do...while loop is similar to a while loop, except the fact that it is guaranteed to execute
at least one time.

1 do {
2 statement (s) ;
3 }while (cond i t i on) ;

Notice that the conditional expression appears at the end of the loop, so the statement(s)
in the loop executes once before the condition is tested.If the condition is true, the flow
of control jumps back up to do, and the statement(s) in the loop executes again. This
process repeats until the given condition becomes false.

Figure 9: do..while loop flowchart

4.2.4 nested loop

C programming allows to use one loop inside another loop.

• Nested for loop

1 for (i n i t ; c ond i t i on ; increment) {
2 for (i n i t ; c ond i t i on ; increment) {
3 statement (s) ;
4 }
5 statement (s) ;
6 }

• Nested while loop

1 while (cond i t i on) {
2

3 while (cond i t i on) {
4 statement (s) ;
5 }
6

7 statement (s) ;
8 }

• Nested do while loop

26

BCANOTESNEPAL.com

1 do {
2

3 statement (s) ;
4

5 do {
6 statement (s) ;
7 }while (cond i t i on) ;
8

9 }while (cond i t i on) ;

• Find Prime numbers between 2 to 100 using prime number

1 #include <s t d i o . h>
2 int main () {
3 /∗ l o c a l v a r i a b l e d e f i n i t i o n ∗/
4 int i , j ;
5 for (i = 2 ; i <100; i++) {
6 for (j = 2 ; j <= (i / j) ; j++)
7 i f (! (i%j)) break ; // i f f a c t o r found , not prime
8 i f (j > (i / j)) p r i n t f (”%d i s prime\n” , i) ;
9 }

10 return 0 ;
11 }

4.3 Break Continue and Goto Statement

4.3.1 Break Statement

The break statement terminates the loop (for, while and do...while loop) immediately
when it is encountered. The break statement is used with decision making statement
such as if...else. The syntax of the statement is
break;
Example of Goto Statement

Figure 10: Flowchart Break Statement

27

BCANOTESNEPAL.com

1 // Program to c a l c u l a t e the sum of maximum of 10 numbers
2 // Ca l cu l a t e s sum un t i l user en t e r s p o s i t i v e number
3 # include <s t d i o . h>
4 int main ()
5 {
6 int i ;
7 double number , sum = 0 . 0 ;
8 for (i =1; i <= 10 ; ++i)
9 {

10 p r i n t f (” Enter a n%d : ” , i) ;
11 s can f (”%l f ” ,&number) ;
12 // I f user en t e r s nega t i v e number , loop i s terminated
13 i f (number < 0 . 0)
14 {
15 break ;
16 }
17 sum += number ; // sum = sum + number ;
18 }
19 p r i n t f (”Sum = %.2 l f ” , sum) ;
20 return 0 ;
21 }

Working of Break Statement

Figure 11: Working of Break Statement

4.3.2 Continue Statement

The continue statement skips some statements inside the loop. The continue statement
is used with decision making statement such as if...else. The syntax is
continue;

28

Example of Continue Statement

Figure 12: Flowchart Continue Statement

1 // Program to c a l c u l a t e sum of maximum of 10 numbers
2 // Negat ive numbers are sk ipped from ca l c u l a t i o n
3 # include <s t d i o . h>
4 int main ()
5 {
6 int i ;
7 double number , sum = 0 . 0 ;
8 for (i =1; i <= 10 ; ++i)
9 {

10 p r i n t f (” Enter a n%d : ” , i) ;
11 s can f (”%l f ” ,&number) ;
12 // I f user en t e r s nega t i v e number , loop i s terminated
13 i f (number < 0 . 0)
14 {
15 continue ;
16 }
17 sum += number ; // sum = sum + number ;
18 }
19 p r i n t f (”Sum = %.2 l f ” , sum) ;
20 return 0 ;
21 }

Working of Continue Statement

29

BCANOTESNEPAL.com

Figure 13: Working of Continue Statement

4.3.3 Goto Statement

The goto statement is used to alter the normal sequence of a C program. The syntax
of goto statement is

1 goto l a b e l ;
2
3
4
5 l a b e l :
6 statements ;

Example of Goto Statement

1 // Program to c a l c u l a t e the sum and average o f maximum of 5 numbers
2 # include <s t d i o . h>
3 int main ()
4 {
5 const int maxInput = 5 ;
6 int i ;
7 double number , average , sum=0.0;
8 for (i =1; i<=maxInput ; ++i)
9 {

10 p r i n t f (”%d . Enter a number : ” , i) ;
11 s can f (”%l f ” ,&number) ;
12 // I f user en t e r s nega t i v e number , f l ow o f program moves to l a b e l jump
13 i f (number < 0 . 0)
14 goto jump ;
15 sum += number ; // sum = sum+number ;
16 }
17 jump :
18 average=sum/(i −1);
19 p r i n t f (”Sum = %.2 f \n” , sum) ;

30

BCANOTESNEPAL.com

20 p r i n t f (”Average = %.2 f ” , average) ;
21 return 0 ;
22 }

Reasons to avoid using goto statement

1. The use of goto statement may lead to code that is buggy and hard to follow.

2. Goto make jumps that are out of scope so it is difficult to follow.

31

BCANOTESNEPAL.com

5 Arrays and Strings

Arrays a kind of data structure that can store a fixed-size sequential collection of ele-
ments of the same type. An array is used to store a collection of data, but it is often more
useful to think of an array as a collection of variables of the same type.Instead of declar-
ing individual variables, such as number0, number1, ..., and number99, you declare one
array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to
represent individual variables. A specific element in an array is accessed by an index.All
arrays consist of contiguous memory locations. The lowest address corresponds to the
first element and the highest address to the last element.

Figure 14: Arrays Representation

5.1 One Dimensional Array

5.1.1 Declaring and Initialising

1 data type array name [a r r a y s i z e] ;
2 double balance [1 0] ;

balance is a variable array which is sufficient to hold up to 10 double numbers.size of
array defines the number of elements in an array. Each element of an array can be
accessed and used as per the need of the program.

1 int age [5]={2 , 4 , 34 , 3 , 4} ;
2 int age []={4 , 6 , 8 , 9 , 10} ;

In the second case the compiler determines the size of an array by calculating the number
of elements in an array.

Figure 15: Arrays Initialisation

Program to find sum of marks of n students

1 #include <s t d i o . h>
2 int main (){
3 int marks [1 0] , i , n , sum=0;
4 p r i n t f (” Enter number o f s tudents : ”) ;
5 s can f (”%d”,&n) ;
6 for (i =0; i<n;++ i){
7 p r i n t f (” Enter marks o f student%d : ” , i +1);
8 s can f (”%d”,&marks [i]) ;
9 sum+=marks [i] ;

10 }
11 p r i n t f (”Sum= %d” ,sum) ;
12 return 0 ;
13 }

32
BCANOTESNEPAL.com

5.2 MultiDimensional Array

C programming language allows programmer to create arrays of arrays known as mul-
tidimensional arrays.

1 f loat a [2] [6] ;

Figure 16: Arrays Initialisation

5.2.1 Initialisation of Multidimensional Arrays

1 int c [2] [3]={{1 ,3 , 0} ,{ −1 ,5 , 9}} ;
2 int c [2] [3]={1 ,3 , 0 , −1 ,5 , 9} ;

In the second case the compiler creates two rows from the given array.
Program to add two matrices

1 #include <s t d i o . h>
2 int main (){
3 f loat a [2] [2] , b [2] [2] , c [2] [2] ;
4 int i , j ;
5 p r i n t f (” Enter the e lements o f 1 s t matrix\n”) ;
6

7 for (i =0; i <2;++ i)
8 for (j =0; j<2;++j){
9 p r i n t f (” Enter a%d%d : ” , i +1, j +1);

10 s can f (”%f ” ,&a [i] [j]) ;
11 }
12

13 p r i n t f (” Enter the e lements o f 2nd matrix\n”) ;
14 for (i =0; i <2;++ i)
15 for (j =0; j<2;++j){
16 p r i n t f (” Enter b%d%d : ” , i +1, j +1);
17 s can f (”%f ” ,&b [i] [j]) ;
18 }
19

20 for (i =0; i <2;++ i)
21 for (j =0; j<2;++j){
22 c [i] [j]=a [i] [j]+b [i] [j] ;
23 }
24 p r i n t f (”\nSum Of Matrix : ”) ;
25 for (i =0; i <2;++ i)
26 for (j =0; j<2;++j){
27 p r i n t f (”%.1 f \ t ” , c [i] [j]) ;
28 i f (j==1)
29 p r i n t f (”\n”) ;
30 }
31 return 0 ;
32 }

Program to Multiply Two matrices

1 #include <s t d i o . h>

33

2 int main ()
3 {
4 int m, n , p , q , c , d , k , sum = 0 ;
5 int f i r s t [1 0] [1 0] , second [1 0] [1 0] , mul t ip ly [1 0] [1 0] ;
6

7 p r i n t f (” Enter rows and columns o f f i r s t matrix\n”) ;
8 s can f (”%d%d” , &m, &n) ;
9 p r i n t f (” Enter the e lements o f f i r s t matrix\n”) ;

10

11 for (c = 0 ; c < m; c++)
12 for (d = 0 ; d < n ; d++)
13 s can f (”%d” , &f i r s t [c] [d]) ;
14

15 p r i n t f (” Enter rows and columns o f second matrix\n”) ;
16 s can f (”%d%d” , &p , &q) ;
17

18 i f (n != p)
19 p r i n t f (”can ’ t be m u l t i p l i e d with each other .\n”) ;
20 else
21 {
22 p r i n t f (” Enter the e lements o f second matrix\n”) ;
23

24 for (c = 0 ; c < p ; c++)
25 for (d = 0 ; d < q ; d++)
26 s can f (”%d” , &second [c] [d]) ;
27

28 for (c = 0 ; c < m; c++) {
29 for (d = 0 ; d < q ; d++) {
30 for (k = 0 ; k < p ; k++) {
31 sum = sum + f i r s t [c] [k]∗ second [k] [d] ;
32 }
33

34 mult ip ly [c] [d] = sum ;
35 sum = 0 ;
36 }
37 }
38

39 p r i n t f (”Product o f entered matr i ce s :−\n”) ;
40

41 for (c = 0 ; c < m; c++) {
42 for (d = 0 ; d < q ; d++)
43 p r i n t f (”%d\ t ” , mul t ip ly [c] [d]) ;
44

45 p r i n t f (”\n”) ;
46 }
47 }
48

49 return 0 ;
50 }

5.3 String

Strings are actually one-dimensional array of characters terminated by a null character.
Thus a null-terminated string contains the characters that comprise the string followed
by a null.The following declaration and initialization create a string consisting of the
word ”Hello”. To hold the null character at the end of the array, the size of the character
array containing the string is one more than the number of characters in the word
”Hello.”

34

1 char g r e e t i n g [6]= ” He l lo ” ;
2 char g r e e t i n g [6]={ ’H ’ , ’ e ’ , ’ l ’ , ’ l ’ , ’ o ’ , ’ \0 ’ } ;

Figure 17: String Representation

5.3.1 Accessing Strings

1 //no need to use address & in scan f f o r s t r i n g s
2 s can f (”%s ” , g r e e t i n g) ;
3 ge t s (g r e e t i n g) ;
4

5 p r i n t f (”%s ” , g r e e t i n g) ;
6 puts (g r e e t i n g) ;

5.3.2 String related fuctions

• strcpy(s1,s2) copies string s2 into the string s1.

• strcat(s1,s2) concatenates string s2 onto the end of string s1

• strlen(s1) returns the length of string s1

• strcmp(s1,s2) returns 0 if s1 and s2 are the same, less than 0 if s1<s2 and greater
than 0 if s1>s2

• strrev(s1) reverses the string s1 and places it in s1

35

BCANOTESNEPAL.com

6 Function

6.1 Function Definition

A function is a group of statements that together perform a task. Every C program
has at least one function, which is main(), and all the most trivial programs can define
additional functions.A function declaration tells the compiler about a function’s name,
return type, and parameters. A function definition provides the actual body of the
function.

6.2 Types of C function

There are two types of C functions

• Library Function

• User Defined Function

6.2.1 Library Function

Library functions are the in-built function in C programming system.

1 main ()
2 p r i n t f ()
3 s can f ()
4 s t r cpy ()
5 s t r c a t ()
6 strcmp ()

are the examples of Library functions available in C.

6.3 User Defined Function

C allows programmer to define their own function according to their requirement. These
types of functions are known as user-defined functions.
Function Prototype(Declaration)
Every function in C programming should be declared before they are used. These type
of declaration are also called function prototype. Function prototype gives compiler
information about function name, type of arguments to be passed and return type.

1 int add (int a , int b) ;

6.4 Defining a Function

The general form of a function definition in C programming language is as follows

1 r e tu rn type funct ion name (parameter l i s t) {
2 body o f the func t i on
3 }

A function definition in C Programming consists of a function header and a function
body.Here are all parts of a function.

• Return Type A function may return a value. The return type is the data type
of the value the function returns. Some functions perform the desired operations
without returning a value. In this case, the return type is the keyword void.

• Function Name This is the actual name of the function. The function name and
the parameter list together constitute the function signature.

36

BCANOTESNEPAL.com

• Parameters A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual parameter
or argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may contain
no parameters.

• Function Body The function body contains a collection of statements that define
what the function does.

6.5 Calling a function

Function with return and without return can be called to using the different syntax.

1 add (a , b) ; // c a l l i n g func t i on wi thout re turn
2 c=add (a , b) ; // c a l l i n g func t i on wi th re turn

6.6 Call by Value

If data is passed by value, the data is copied from the variable used in for example main()
to a variable used by the function. So if the data passed (that is stored in the function
variable) is modified inside the function, the value is only changed in the variable used
inside the function.

1 #include <s t d i o . h>
2 void c a l l b y v a l u e (int x) {
3 p r i n t f (” I n s i d e func t i on x = %d be fo r e adding 10 .\n” , x) ;
4 x += 10 ;
5 p r i n t f (” I n s i d e func t i on x = %d a f t e r adding 10 .\n” , x) ;
6 }
7 int main () {
8 int a=10;
9

10 p r i n t f (”a = %d be fo r e func t i on .\n” , a) ;
11 c a l l b y v a l u e (a) ;
12 p r i n t f (”a = %d a f t e r func t i on .\n” , a) ;
13 return 0 ;
14 }

In the main() we create a integer that has the value of 10. We print some information at
every stage, beginning by printing our variable a. Then function call by value is called
and we input the variable a. This variable (a) is then copied to the function variable x.
In the function we add 10 to x (and also call some print statements). Then when the
next statement is called in main() the value of variable a is printed. We can see that
the value of variable a isn’t changed by the call of the function call by value().

6.7 Call by Reference

If data is passed by reference, a pointer to the data is copied instead of the actual
variable as is done in a call by value. Because a pointer is copied, if the value at that
pointers address is changed in the function, the value is also changed in main().

1 #include <s t d i o . h>
2 void c a l l b y r e f e r e n c e (int ∗y) {
3 p r i n t f (” I n s i d e func t i on y = %d be fo r e adding 10 .\n” , ∗y) ;
4 (∗y) += 10 ;
5 p r i n t f (” I n s i d e func t i on y = %d a f t e r adding 10 .\n” , ∗y) ;
6 }

37

BCANOTESNEPAL.com

7 int main () {
8 int b=10;
9 p r i n t f (”b = %d be fo r e func t i on .\n” , b) ;

10 c a l l b y r e f e r e n c e (&b) ;
11 p r i n t f (”b = %d a f t e r func t i on .\n” , b) ;
12 return 0 ;
13 }

We start with an integer b that has the value 10. The function call by reference() is
called and the address of the variable b is passed to this function. Inside the function
there is some before and after print statement done and there is 10 added to the value
at the memory pointed by y. Therefore at the end of the function the value is 20. Then
in main() we again print the variable b and as you can see the value is changed (as
expected) to 20.

6.8 Passing array as an argument to a function

Likewise int and floats an array can be passed as an argument to the function .

1 f loat l a r g e s t (f loat a [] , int s i z e) ;
2 main (){
3 f loat value [4] ={2 . 5 , −1 . 6 , 3 . 4 , 6 . 8} ;
4 p r i n t f (”%f \n” , l a r g e s t (value , 4)) ;
5 }
6 f loat l a r g e s t (f loat a [] , int s i z e){
7 int i ;
8 f loat max ;
9 max=a [0] ;

10 for (i =1; i<s i z e ; i ++){
11 i f (max<a [i])
12 max=a [i] ;
13 return (max) ;
14 }
15 }

6.9 Storage Class in C

6.9.1 auto

The auto storage class is the default storage class for all local variables.

1 {
2 int mount ;
3 auto int month ;
4 }

The example above defines two variables with in the same storage class. ’auto’ can only
be used within functions, i.e., local variables.

6.9.2 register

The register storage class is used to define local variables that should be stored in a
register instead of RAM. This means that the variable has a maximum size equal to the
register size (usually one word) and can’t have the unary ’&’ operator applied to it (as
it does not have a memory location).

1 {
2 register int mi le s ;
3 }

38

The register should only be used for variables that require quick access such as counters.
It should also be noted that defining ’register’ does not mean that the variable will
be stored in a register. It means that it MIGHT be stored in a register depending on
hardware and implementation restrictions.

6.9.3 static

The static storage class instructs the compiler to keep a local variable in existence during
the life-time of the program instead of creating and destroying it each time it comes into
and goes out of scope. Therefore, making local variables static allows them to maintain
their values between function calls.The static modifier may also be applied to global
variables. When this is done, it causes that variable’s scope to be restricted to the file
in which it is declared.In C programming, when static is used on a class data member,
it causes only one copy of that member to be shared by all the objects of its class.

1 #include <s t d i o . h>
2 void func (void) ;
3 stat ic int count = 5 ; /∗ g l o b a l v a r i a b l e ∗/
4 main () {
5 while (count−−) {
6 func () ;
7 }
8 return 0 ;
9 }

10 /∗ f unc t i on d e f i n i t i o n ∗/
11 void func (void) {
12 stat ic int i = 5 ; /∗ l o c a l s t a t i c v a r i a b l e ∗/
13 i ++;
14 p r i n t f (” i i s %d and count i s %d\n” , i , count) ;
15 }

6.9.4 extern

The extern storage class is used to give a reference of a global variable that is visible
to ALL the program files. When you use ’extern’, the variable cannot be initialized
however, it points the variable name at a storage location that has been previously
defined.When you have multiple files and you define a global variable or function, which
will also be used in other files, then extern will be used in another file to provide the
reference of defined variable or function. Just for understanding, extern is used to declare
a global variable or function in another file.

6.10 Recursion

A function that calls itself is known as recursive function and this technique is known as
recursion in C programming.Recursion is more elegant and requires few variables which
make program clean. Recursion can be used to replace complex nesting code by dividing
the problem into same problem of its sub-type.In other hand, it is hard to think the
logic of a recursive function. It is also difficult to debug the code containing recursion.

6.10.1 Factorial Using Recursion

1 #include<s t d i o . h>
2 int f a c t o r i a l (int n) ;
3 int main ()
4 {

39

BCANOTESNEPAL.com

5 int n ;
6 p r i n t f (” Enter an p o s i t i v e i n t e g e r : ”) ;
7 s can f (”%d”,&n) ;
8 p r i n t f (” F a c t o r i a l o f %d = %ld ” , n , f a c t o r i a l (n)) ;
9 return 0 ;

10 }
11 int f a c t o r i a l (int n)
12 {
13 i f (n !=1)
14 return n∗ f a c t o r i a l (n−1);
15 }

6.10.2 Fibonacci Series Using Recursion

1 #include<s t d i o . h>
2 int Fibonacc i (int) ;
3 main ()
4 {
5 int n , i = 0 , c ;
6 s can f (”%d”,&n) ;
7 p r i n t f (” Fibonacc i s e r i e s \n”) ;
8 for (c = 1 ; c <= n ; c++)
9 {

10 p r i n t f (”%d\n” , Fibonacc i (i)) ;
11 i ++;
12 }
13 return 0 ;
14 }
15 int Fibonacc i (int n)
16 {
17 i f (n == 0)
18 return 0 ;
19 else i f (n == 1)
20 return 1 ;
21 else
22 return (Fibonacc i (n−1) + Fibonacc i (n−2)) ;
23 }

6.11 Preprocessor Directives

Before a C program is compiled in a compiler, source code is processed by a program
called preprocessor. This process is called preprocessing.Commands used in preprocessor
are called preprocessor directives and they begin with “#” symbol.

1 #include<s t d i o . h>
2 #define he ight 100
3 #define number 3 .14
4 #define l e t t e r ’A ’
5 #define l e t t e r s e q u e n c e ”ABC”
6 #define backs l a sh char ’ \? ’
7 void main ()
8 {
9 p r i n t f (” va lue o f he ight : %d\n” , he ight) ;

10 p r i n t f (” va lue o f number : %f \n” , number) ;
11 p r i n t f (” va lue o f l e t t e r : %c\n” , l e t t e r) ;
12 p r i n t f (” va lue o f l e t t e r s e q u e n c e : %s \n” , l e t t e r s e q u e n c e) ;
13 p r i n t f (” va lue o f backs lah char : %c\n” , back s l a sh char) ;
14 getch () ;
15

16 }

40

Preprocessor Syntax Description

Macro #define macro defines con-
stant value and can
be any of the basic
data types

Header Inclusion
Files

#include<file name> source code of the file
file name is included
in the program at the
specified place

Conditional Compi-
lation

#ifedf, #en-
dif,#if,#else

set of commands are
included or excluded
in source program
before compilation
with respect to the
condition

Other directives #undef,#pragma #undef is used
to undefine a de-
fined macro vari-
able.#pragma is
used to call a func-
tion before and
after function in C
program.

Table 2: Preprocessor Directives

6.12 Macro Substitution

One of the major use of the preprocessor directives is the creation of macros.Macro
Substitution is a process where an identifier in a program is replaced by a predefined
string composed of one or more tokens.The general form of macro definition is

1 #define i d e n t i f i e r s t r i n g
2 #define count 100
3 #define area 5∗12.46
4 #define cube (x) (x∗x∗x)

41

BCANOTESNEPAL.com

Figure 18: C program Compilation

7 Pointer

A pointer is a variable whose value is the address of another variable, i.e., direct address
of the memory location. Like any variable or constant, you must declare a pointer before
using it to store any variable address. The general form of a pointer variable declaration
is

1 type ∗var−name ;

Here, type is the pointer’s base type; it must be a valid C data type and var-name is
the name of the pointer variable. The asterisk * used to declare a pointer is the same
asterisk used for multiplication. However, in this statement the asterisk is being used to
designate a variable as a pointer. Take a look at some of the valid pointer declarations

1 int ∗ ip ; /∗ po in t e r to an i n t e g e r ∗/
2 double ∗dp ; /∗ po in t e r to a doub le ∗/
3 f loat ∗ fp ; /∗ po in t e r to a f l o a t ∗/
4 char ∗ch /∗ po in t e r to a charac t e r ∗/

7.1 Using Pointers

1 #include <s t d i o . h>
2 int main () {
3

4 int var = 20 ; /∗ ac t ua l v a r i a b l e d e c l a r a t i on ∗/
5 int ∗ ip ; /∗ po in t e r v a r i a b l e d e c l a r a t i on ∗/
6 ip = &var ; /∗ s t o r e address o f var in po in t e r v a r i a b l e ∗/

42

7

8 p r i n t f (” Address o f var v a r i a b l e : %x\n” , &var) ;
9 /∗ address s t o r ed in po in t e r v a r i a b l e ∗/

10 p r i n t f (” Address s to r ed in ip v a r i a b l e : %x\n” , ip) ;
11 /∗ acces s the va lue us ing the po in t e r ∗/
12 p r i n t f (”Value o f ∗ ip v a r i a b l e : %d\n” , ∗ ip) ;
13

14 return 0 ;
15 }

7.2 Null Pointer

It is always a good practice to assign a NULL value to a pointer variable in case you do
not have an exact address to be assigned. This is done at the time of variable declaration.
A pointer that is assigned NULL is called a null pointer.

1 #include <s t d i o . h>
2 int main () {
3

4 int ∗ptr = NULL;
5 p r i n t f (”The value o f ptr i s : %x\n” , ptr) ;
6 return 0 ;
7 }

7.3 Pointer Arithmetic

A pointer in c is an address, which is a numeric value. Therefore, you can perform
arithmetic operations on a pointer just as you can on a numeric value. There are four
arithmetic operators that can be used on pointers: ++, –, +, and -.

1 ptr++

After the above operation, the ptr will point to the location 1004 because each time
ptr is incremented, it will point to the next integer location which is 2 bytes next to
the current location in 16 bit system. This operation will move the pointer to the next
memory location without impacting the actual value at the memory location. If ptr
points to a character whose address is 1000, then the above operation will point to the
location 1001 because the next character will be available at 1001.

7.3.1 Incrementing Pointer

We prefer using a pointer in our program instead of an array because the variable pointer
can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer.

1 #include <s t d i o . h>
2 int main () {
3

4 int var [3] = {10 , 100 , 200} ;
5 int i , ∗ptr ;
6

7 /∗ l e t us have array address in po in t e r ∗/
8 ptr = var ;
9

10 for (i = 0 ; i < 3 ; i++) {
11 p r i n t f (” Address o f var [%d] = %x\n” , i , ptr) ;
12 p r i n t f (”Value o f var [%d] = %d\n” , i , ∗ptr) ;
13 /∗ move to the next l o c a t i o n ∗/
14 ptr++;

43

BCANOTESNEPAL.com

15 }
16 return 0 ;
17 }

7.3.2 Decrementing a Pointer

Likewise the increment of pointer the pointer variable can also be decremented which is
shown as:

1 i n c lude <s t d i o . h>
2 int main () {
3

4 int var [3] = {10 , 100 , 200} ;
5 int i , ∗ptr ;
6 /∗ l e t us have array address in po in t e r ∗/
7 ptr = &var [2] ;
8 for (i = 2 ; i >= 0 ; i−−) {
9 p r i n t f (” Address o f var [%d] = %x\n” , i , ptr) ;

10 p r i n t f (”Value o f var [%d] = %d\n” , i , ∗ptr) ;
11 /∗ move to the prev ious l o c a t i o n ∗/
12 ptr−−;
13 }
14 return 0 ;
15 }

7.4 Definition Pointer to Arrays

An array name is a constant pointer to the first element of the array. Therefore, in the
declaration

1 double balance [5 0] ;

balance is a pointer to &balance[0], which is the address of the first element of the array
balance. Thus, the following program fragment assigns p as the address of the first
element of balance.

1 double ∗p ;
2 double balance [1 0] ;
3 p = balance ; //p=&ba lance [0] ;

It is legal to use array names as constant pointers, and vice versa. Therefore, *(balance
+ 4) is a legitimate way of accessing the data at balance[4].Once you store the address
of the first element in ’p’, you can access the array elements using *p, *(p+1), *(p+2)
and so on.

1 #include <s t d i o . h>
2 int main () {
3

4 /∗ an array wi th 5 e lements ∗/
5 double balance [5] = {1000 .0 , 2 . 0 , 3 . 4 , 17 . 0 , 5 0 . 0} ;
6 double ∗p ;
7 int i ;
8 p = balance ; //p=&ba lance [0]
9

10 /∗ output each array element ’ s va lue ∗/
11 p r i n t f (”Array va lue s us ing po in t e r \n”) ;
12 for (i = 0 ; i < 5 ; i++) {
13 p r i n t f (” ∗(p + %d) : %f \n” , i , ∗(p + i)) ;
14 }

44

15 p r i n t f (”Array va lue s us ing balance as address \n”) ;
16

17 for (i = 0 ; i < 5 ; i++) {
18 p r i n t f (” ∗(ba lance + %d) : %f \n” , i , ∗(ba lance + i)) ;
19 }
20 return 0 ;
21 }

1 main (){
2 int ∗p , sum , i ;
3 int x [5]={5 , 9 , 6 , 7 , 3} ;
4 i =0;
5 p=x ; //p=&x [0] ;
6

7 while (i <5){
8 p r i n t f (”x[%d] %d %u” , i ,∗p , p) ;
9 sum=sum+∗p ;

10 i ++; p++;
11 }
12 p r i n t f (”\n sum=%d\n” ,sum) ;
13 }

Here the base address of array x is assigned to the pointer p. sum adds the value of
the int pointed by the pointer p using (*p) indirection operator and the increment i++
increases the value of the variable i by i and the increment p++ increase the value of
the address pointed by p which is an integer and infact increased by 2 bytes.Ultimately
the sum is calculated and printed.

7.5 Returning Multiple Values from a function

Return statement can return a single value. however multiple values can be returned
from functions using arguments that we pass to a function.The arguments that are
used to send out information are called output parameters.The mechanism of sending
back information through arguments is achieved using what are known as the address

operator(&) and indirection operator (*).

1 void mathoperation (int x , int y , int ∗ s , int ∗d) ;
2 main (){
3 int x=20,y=20, s , d ;
4 mathoperation (x , y,&s ,&d) ;
5 p r i n t f (”sum=%d\n d i f f=%d” , s , d) ;
6 }
7 void mathoperation (int a , int b , int ∗sum , int ∗ d i f f){
8 ∗sum=a+b ;
9 ∗ d i f f=a−b ;

10 }
11 }

The variables *sum and *diff are known as pointers and sum and diff as pointer vari-
ables.Since they are declared as the int, they can point to locations of int type data.

7.6 Pointer to String

As string can be considered as a character array. C supports an alternative way to create
strings using pointer variables of type char.

1 char ∗ s t r =”good” ;

45

BCANOTESNEPAL.com

This creates a string literal and then stores its address in the pointer variables str. The
pointer now pointer to the first character of the string good.we can print the content of
the str using printf or puts function

1 p r i n t f (”%s ” , s t r) ;
2 puts (s t r) ;

Remember although str is a pointer to the string, it is also the name of the string.
Therefore we do not need an indirection operator *.

1 main (){
2 char ∗name ;
3 int l ength ;
4 char ∗ cptr=name ;
5 name=”DELHI”
6 p r i n t f (”%s \n” ,name) ;
7 while (∗ cptr != ’ \0 ’){
8 p r i n t f (”%c i s s to r ed at address at %u\n” ,∗ cptr , cpt r) ;
9 cptr++;

10 }
11 l ength=cptr−name ;
12 p r i n t f (”\n Length o f S t r ing i s =%d\n” ,name) ;
13 }

7.7 Double pointer

Stores the address of a pointer variable. Generally declared as

1 ∗∗ ptr ;

1 #include<s t d i o . h>
2 int main ()
3 {
4

5 int num = 45 , ∗ptr , ∗∗ ptr2pt r ;
6 ptr = #
7 ptr2pt r = &ptr ;
8 p r i n t f (”%d” ,∗∗ ptr2pt r) ;
9 return (0) ;

10 }

7.8 Dynamic Memory Allocation

The exact size of array is unknown untill the compile time,i.e., time when a compier
compiles code written in a programming language into a executable form. The size of
array you have declared initially can be sometimes insufficient and sometimes more than
required. Dynamic memory allocation allows a program to obtain more memory space,
while running or to release space when no space is required.

7.8.1 Malloc

The name malloc stands for ”memory allocation”. The function malloc() reserves a
block of memory of specified size and return a pointer of type void which can be casted
into pointer of any form

1 ptr=(cast−type ∗) mal loc (byte−s i z e)

46

BCANOTESNEPAL.com

Function Use of Function

malloc Allocates requested size of bytes and returns a
pointer first byte of allocated space

calloc Allocates space for an array elements, initializes
to zero and then returns a pointer to memory

free dellocate the previously allocated space

realloc Change the size of previously allocated space

Table 3: Function Dynamic Memory Allocation

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of
memory with size of byte size. If the space is insufficient, allocation fails and returns
NULL pointer.

1 ptr=(int ∗) mal loc (100∗ s izeof (int)) ;

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes
respectively and the pointer points to the address of first byte of memory.

7.8.2 Calloc

The name calloc stands for ”contiguous allocation”. The only difference between mal-
loc() and calloc() is that, malloc() allocates single block of memory whereas calloc()
allocates multiple blocks of memory each of same size and sets all bytes to zero.

1 ptr=(cast−type ∗) c a l l o c (n , element−s i z e) ;

This statement will allocate contiguous space in memory for an array of n elements.

1 ptr=(f loat ∗) c a l l o c (25 , s izeof (f loat)) ;

This statement allocates contiguous space in memory for an array of 25 elements each
of size of float, i.e, 4 bytes.

7.8.3 free

Dynamically allocated memory with either calloc() or malloc() does not get return on
its own. The programmer must use free() explicitly to release space.

1 f r e e (ptr) ;

This statement cause the space in memory pointer by ptr to be deallocated.
Find sum of n elements entered using malloc

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 int main (){
4 int n , i ,∗ ptr , sum=0;
5 p r i n t f (” Enter number o f e lements : ”) ;
6 s can f (”%d”,&n) ;
7 ptr=(int ∗) mal loc (n∗ s izeof (int)) ; //mal loc a l l o c a t i o n
8 i f (ptr==NULL)
9 {

10 p r i n t f (” Error ! memory not a l l o c a t e d . ”) ;
11 e x i t (0) ;
12 }
13 p r i n t f (” Enter e lements o f array : ”) ;
14 for (i =0; i<n;++ i)

47

BCANOTESNEPAL.com

15 {
16 s can f (”%d” , ptr+i) ;
17 sum+=∗(ptr+i) ;
18 }
19 p r i n t f (”Sum=%d” ,sum) ;
20 f r e e (ptr) ;
21 return 0 ;
22 }

Find sum of n elements entered using malloc

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 int main (){
4 int n , i ,∗ ptr , sum=0;
5 p r i n t f (” Enter number o f e lements : ”) ;
6 s can f (”%d”,&n) ;
7 ptr=(int ∗) c a l l o c (n , s izeof (int)) ;
8 i f (ptr==NULL)
9 {

10 p r i n t f (” Error ! memory not a l l o c a t e d . ”) ;
11 e x i t (0) ;
12 }
13 p r i n t f (” Enter e lements o f array : ”) ;
14 for (i =0; i<n;++ i)
15 {
16 s can f (”%d” , ptr+i) ;
17 sum+=∗(ptr+i) ;
18 }
19 p r i n t f (”Sum=%d” ,sum) ;
20 f r e e (ptr) ;
21 return 0 ;
22 }

48

BCANOTESNEPAL.com

