OBJECTIVE QUESTIONS

- Which of the following is the value of $\lim_{x\to 2} \left(\frac{x^2-4}{x^2+4}\right)$?
 - (a) 1
- (b) 0

(c) $\frac{-1}{2}$

- (d) ∞
- Which of the following is the value of $\lim_{x\to\infty} \left(\frac{4-x^2}{x^2-1}\right)$? 2.
 - (a) 1

- What is the value of $\lim_{x \to 1} \left(\frac{x^2 x}{2x^2 2x} \right)$? 3.
 - (a) -2
- (b) -1

- (d) does not exit

- What is the value of $\lim_{x \to 1} \left(\frac{x^2 x}{2x^2 2x} \right)$? 4.
 - (a) -2
- (b) -1
- (c) $\frac{1}{2}$

(d) does not exit

- What is the value of $\lim_{x\to 4} \left(\frac{x^2-2x-8}{x-4}\right)$?
 - (a) 4

- (b) -4
- (c) 6

- A function defined by $f(x) = \frac{x |x|}{x}$, $x \ne 0$, and f(0) = 2, the which of 6. the following is correct?
 - (a) f is continuous at x = 1
- (b) f is continuous at x = 0
- (c) f is continuous $f^{+} -1$
- (d) f is continuous at x = 2.
- 7. If $f(x) = \begin{cases} 1 + kx & x \le 3 \\ 1 kx^2 & x > 3 \end{cases}$ is continuous at x = 3, then which of the following is the value of k?
 - (a) 0, 1
- (b) 0

- (c) 1, -1
- (d) 2

If $f(x) = \begin{cases} x^2 - 1 & x \neq 1 \\ 4 & x = 1 \end{cases}$, the which of the following is true?

- $\lim_{x \to 1} f(x)$ exists. 2. f(1) exist. 3. f is continuous at x = 1.

(a) 1 is true

(b) 2 is true

(c) 1 and 2

(d) 1, 2, 3 true

If $f(x) = \begin{cases} \frac{x^2 - x}{2x} & x \neq 0 \\ f(0) = k \end{cases}$ is continuous at x = 0, then which of the following is the value of k?

- (b) $\frac{-1}{2}$
- (c) 0

(d) 1

If $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ both exist but not equal, then which of the following is true?.

- (a) f has removable discontinuity
- (b) f has discontinuity of first kind
- (c) f has limit
- (d) f has discontinuity of second kind

Answer:

- 1. (b)
- 2. (d) 3. (b) 4. (c) 5. (c) 6. (b) 7. (c) 8. (c)

- 9. (b)
- 10. (b)

Objective Questions

The derivative of a function
$$f(x)$$
 is

$$\lim_{(a) f'(x) = \Delta x \to 0} \left(\frac{f(x + \Delta x) + f(x)}{\Delta x} \right) \text{ (b) } f'(x) = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right)$$

$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(d)
$$f'(x) = \frac{f(x + \Delta x) + f(x)}{\Delta x}$$

2. If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx}$ is

(a)
$$\frac{v\frac{du}{dx} + u\frac{dv}{dx}}{v^2}$$

(b)
$$\frac{u\frac{dv}{dx} - v\frac{du}{dx}}{u^2}$$

(c)
$$\frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

(d)
$$\frac{u\frac{dv}{dx} - v\frac{du}{dx}}{v^2}$$

3. If
$$y = 2^x$$
 then $\frac{dy}{dx}$ is

(a)
$$x(2^{x-1})$$

(b)
$$\frac{2^x}{\ln x}$$

(c)
$$2^{x}ln(2)$$

(d) none of these

4. If
$$x = at^2$$
 and $y = 2at$ then $\frac{dy}{dx}$ is

(a)
$$1/t$$

(b)
$$-1/t^2$$

(c)
$$-2/t$$

(d) 2/t

5. If
$$y^3 = x^2$$
 then $\frac{dy}{dx}$ is

(a)
$$\frac{2x}{y^3}$$

(a)
$$\frac{2x}{y^3}$$
 (b) $\frac{2x}{3y^2}$

(c)
$$\frac{x^2}{3y^2}$$

(d)
$$\frac{x^2}{3y}$$

5. The derivative of
$$\frac{1-\cos 2x}{\sin 2x}$$
 is

- (a) $\sec^2 x$
- (b) tanx
- (c)
- $ln(\cos x)$ (d) $ln(\sin x)$

1. If
$$f(x) = \frac{1}{2} (e^t + e^{-t})$$
 then $f'(0)$ is

- (a) 1
- (b) 0
- (c) -1
- (d) 2

(a) 1 (b) 0	(c) -1
9. The 4 th derivative of function	$x^4 + 3x - 9$ is (d) 2
(a) 4	(b) 0
(c) 24	(d) none of these
10. If $f(x) = \sqrt{3 - 2x}$ then $f'(x)$ is	(a) Hone of these
-2 1	
	(c) $\frac{2}{\sqrt{3-2x}}$ (d) $\frac{-1}{\sqrt{3-2x}}$
11. If $y = ln(\sin(\cos x))$ then $\frac{dy}{dx}$ is	
(a) $\frac{1}{\sin(\cos x)}$	(b) $\frac{\cos x}{\sin(\cos x)}$
	$\sin(\cos x)$
(c) $\frac{\cos(\cos x)}{\sin(\cos x)}$	(d) $-\sin x \cot(\cos x)$
12. If $x^2 + y^2 = 5$ then $\frac{dy}{dx}$ is	
(a) x/y (b) y/x	(c) $-x/y$ (d) $-y/x$
13. Which of the following stateme	ent is correct:
(a) Every continuous function	is differentiable
(b) Every differentiable functi	on is continuous
(c) Every continuous function	may or may not be differentiable
(d) Every differentiable function	on may or may not be continuous
14. In curve $y = x^4 - 10$, if x change	s from 2 to 1.99 then change in v is
(a) 0.32 (b) 0.032	(c) 5.68 (d) 5.968
	hose side is increased from 1 cm to
(a) 0.0001 cm^2	(b) 0.01 cm^2
(c) 0.02 cm^2	(d) 0.01 cm^2
 The points at which tangents to to x-axis are 	
(a) $(2, -2)$ and $(-2, -34)$	(b) (2, 34) and (-2, 0)
(c) $(0, 34)$ and $(-2, 0)$	(d) (2, 2) and (-2, 34)
	Scanned by CamScanner

If f(1) = -1, f'(1) = 1, g(1) = 3 and g'(1) = 4 then value of $\frac{df_2}{dx}$

(b) 0

8.

(a) 1

		tion of tange	ent of cur	ve $y = x^2$	-x	at $x = 1$ is	
17.	Equi	ation of tange x - y = 1 y + 1 = 0			(b)	x + y = 1	
	(a)	y + 1 = 0)		(d)	x + y + 1 = 0	
	(c)	£tongent 1	to circle x	$v^2 + v^2 = 0$	100 :	at point (-6, 8)	
18.	Slop	e of tangons	(b) $-\frac{3}{4}$		(c)	4/3	1S
19.	The	point on curv	y = y = x	- x wnere	sloj	pe of tangent is	s-1, is
	(a)	(1, 0)	(b) (b, 1)	(c)	(1, 1)	(d) (0, 0)
	Rolle	e's Theorem	assets tha	t .			
20.	(a)	Existence of point is para	f at least	one point	t on	given interval,	tangent at that
	(b)	Existence of point is perp				given interval,	tangent at that
	(c)	Existence of point is para			t on	given interval,	tangent at that
	(d)	None of abo	ove.				
21.	Mea	n Value The	orem asse	erts that		1. 文字的图片。	
	(a)	Existence o	f at least	one poin	t on	given interval,	tangent at that
		point is para	allel to x-	axis.			
	(b)	point is perp	pendicula	r to x-axi	is.		tangent at that
	(c)	Existence o point b perp interval	f at least pendicula	one poin r to the cl	t on hord	given interval, joining the end	tangent at that d points of that
	(d)	Existence o	f at least allel to ch	one poin	t on ng er	given interval, and of points of	tangent at that that interval.
22.	For					2], the value	
	Valu	e Theorem i	is	. 34			
	(a)	1	(b) 1/2		(c)		(d) 3/2
23.	For The	the function	f(x) = s	sinx in [0, π], the value of	
	(a)	0	(b) $\pi/2$		(c)	π	(d) $\pi/4$
24.	The	naocean	4!4!	f Maan \	Zalue	Theorem for 1	function $f(x)$ is
	(a)	continuous	ondition (i wican v	(b)	differentiable	in (a, b)
	(c)	both (a) and	in [a, 0] d (c)		(d)	none of these	

and the second second	Answer:		* 2	. '				
and the second second	1. (b)	2.(c)	3. (c)	4. (a)	5. (b)	6. (a)	7. (b)	8. (c)
	9.(b)		11. (d)					
Section of the latest section in	17. (b)	18. (b)						

-		0	BJECTIV	E QL	ESTION	S	
1.	The slop	e of the tar	ngent to the	e curv	$e^{x^2-2x} +$	2 at $\left(\frac{1}{2}\right)$	$(\frac{1}{2}, 0)_{is}$
	(a) -1	(b)		-	0	(d	$\frac{1}{2}$
2.	The inc $x^2 + y^2 =$	lination w 36 at (0, 6)	ith the x) is given b	–axis y	of the	tangen	t to the cu
	(a) π	(b)	$\frac{3\pi}{2}$	(c)	0	(d	$\frac{\pi}{2}$
3.	The func	tion f(x) = 3	$x^2 - 2x$ is in	icreas	ing in the	interva	ıl.
	(a) $x > 1$	(b)	$x \leq -1$	(c)	$x \ge -1$	(d)	x < 1
4.	The mini	mum value	of the fun	ction j	$f(x) = x^3 -$	$6x^2 + 9$	9x + 12 is
	(a) 12	(b)	10	(c)	-10	(d)) -2
5.	The maxi	mum value	of the fun	ction	$f(x) = 2x^3$	$-15x^{2}$	+36x + 5 is
	(a) 13	(b)	3	(c)	-3	(d)	33
6.	The sum of the sum	of two nor	zero num eciprocals?	ber is	4. What	is the	minimum va
	(a) $\frac{1}{4}$	(b) ()	(c)	$\frac{1}{2}$	(d)	- 1
7.	The critica	l points of	the function	on $f(x)$	$=(x-2)^2$	2/3(2x +	1) are
	(a) 1 and	12 (b)	-1 and 2	(c)	1 only	(d)	1 and $-\frac{1}{2}$
3. i	The curve s s defined i	y = f(x) wif	ll be conca	ave do	wnward i	n the i	interval when
(a) $f''(x)$	= 0 (b) f	$\mathbf{''}(x) < 0$	(c)	f''(x) > 0	(d)	f'(x) < 0
'. I	he functio	$n f(x) = x^3$	$-3x^2+1a$	at $x = $	–2 is		
	a) concav				(b)	con	cave upward
((c) point o	of inflection	n		(d)	non	e
0. T	he cost $c(x)$	(2) = 20 + 2	$x + 0.5x^2 t$	hen sl	ope of cos	st is	
(4	., 0	(b) 1	٠.		2	(d)	0.5
	wer:			. ,			
	. (a)	2.(c)	3. (a)	•	4. (a)		5. (d)
6	. (d)	7. (a)	8. (b)		9.(a)	ř	10. (b)
					- ()		

9.(a)

OBJECTIVE QUESTIONS

The area of the region bounded by the curve $y = x^2$ and x = 1 is

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{1}{3}$$

$$(d)^{\frac{7}{3}}$$

2.
$$\int (2x+1)^5 dx =$$

(a)
$$\frac{(2x+1)^6}{12}$$
 + C

(b)
$$\frac{(2x+1)^6}{6} + C$$

(c)
$$6(2x+1)^5 + C$$
 (d) $12(2x+1)^5 + C$

(d)
$$12(2x+1)^5 + C$$

3.
$$\int_{0}^{1/\sqrt{2}} \frac{dx}{\sqrt{1-x^2}} =$$

(a)
$$\frac{\pi}{2}$$

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{4}$$

4.
$$\int_{0}^{2} \frac{2x \, dx}{\sqrt{x^2 + 4}} =$$

(a)
$$2\sqrt{2}$$

(c)
$$\frac{4\sqrt{2}}{3}$$

(a)
$$2\sqrt{2}$$
 (b) 4 (c) $\frac{4\sqrt{2}}{3}$ (d) $2\sqrt{2}-2$

The area bounded by the curve y = lnx, x-axis and the line x = e is

(c)
$$\frac{1}{e}$$

(d)
$$1 + \frac{1}{e}$$

6.
$$\int_{0}^{4} \frac{dx}{\sqrt{4-x}} =$$
(a) 3 (b) 2 (c)

$$(c)$$
 4

$$(d)$$
 1

7.
$$\int_{0}^{1} 2x e^{x^{2}} dx =$$

(a)
$$e - 1$$
 (b) $e - 2$

8.
$$\int_{1}^{\infty} \frac{1}{x^4} dx =$$

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{1}{3}$$

$$(d)\frac{1}{5}$$

			-d v =	$= x^2$ is			
	Area between	y = x a	nu y	CN of	(c)	1 11 1	the way
9.	Area co	(b)	1		(6)	3	(d) 2
					π		
	(a) $\frac{1}{6}$ Area under the	-1171/P	v = c	osx , $0 \le x$	$\leq \frac{\pi}{2}$	15	
10	Area under th	e cui vo	<i>y</i>		DOM:		Section 1
10.	41.4	(b)	3		(c)	All officers	(d) 2
	$(a)\frac{1}{2}$	(0)	2	ding is			
	(a) $\frac{1}{2}$ Volume of spl	here of	UIIIL 1	adius is		π	i a
11.	Volume	(b)	4π		(c)	$\frac{\kappa}{6}$	$(d)\frac{3\pi}{2}$
	$(a)\frac{2\pi}{3}$					O	7 2
	Volume of co	with	unit	base radii	ıs is		
12.	Volume of co	ne with	πh			$2\pi h$	πh^3
	$(-)\frac{\pi}{}$	(b)	3		(0)	$\frac{2\pi h}{3}$	$(d)\frac{\pi h^3}{3}$
	(a) ₃ The average V	1 01	f #x) =	$= x^3$ on $[0]$, 2] is	S	
13.	The average v	(b)	2	<i>y</i>	(c)	3	(d) 4
	(a) 1	(0)	1	dv	` '		
	Approximate	value	of C	$\frac{dx}{1+x^2}$ wit	h n =	= 2. Using	Trapezoidal rule
14.	Approximate	A	, , ,	1 ' 2			
		1	U na of c	lecimals i	s		
	correct to three	ee place	01 C	5	(c)	0.785	(d) 0.542
	(a) 0.324		0.35				
15	Approximate	value	of (7)	$\frac{dx}{dx}$ with	n=4	. Using Si	mpson's rule
13.	rippromise		•	+ λ			
	4.4 - 41	م مام	0	lecimals i	c		
	correct to thr				s (c)	0.432	(d) 0.693
16	(a) 0.194 The area bou	(U) ndad by	0.20	hola $v^2 =$	(c) 4r r-	-axis and l	
10.	4			ooia y	12, 2	2	$(d)\frac{1}{8}$
	$(a)\frac{1}{4}$	(b)	3		(c)	- 3	(a) 8
	$\pi/4$						
17	$-\int \cos x dx$						
	0						
	_		. 1			_	(d) $2 + \sqrt{2}$
	(a) $\frac{\pi}{4}$	(b)	$\frac{1}{\sqrt{2}}$		(c)	$2-\sqrt{2}$	(d)2
	ANSWER		V2			N.	
	1. (c)	2.(a)		3. (d)		4. (b)	5. (c)
	6.(c)	7. (a)		3. (u) 8. (c)		9.(a)	10. (c)
	11. (b) 16. (b)	12. (b)		13. (b)		14. (c)	15. (d)
	10. (0)	17. (b)					

Objective Questions

- 1. The order and degree of a differential equation $\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^2 = x_{15}$
 - (a) 6, 9
- (b) 3, 6
- (c) 3, 2

- (d) 2, 3
- 2. The degree and order of a differential equation $\left(\frac{d^2y}{dx^2}\right)^2 = \sqrt{1 + \frac{d^2y}{dx^2}}$ is
 - (a) 2, 2
- (b) 1, 2
- (c) 2, 4

- (d) 4, 2
- 3. The solution of a differential equation $x + y = \cos^{-1}\left(\frac{dy}{dx}\right)$ is
 - (a) $x = \tan\left(\frac{x+y}{2}\right) + C$
 - (c) $x = \tan(x + y) + C$
- (b) $y = \sin\left(\frac{x+y}{2}\right) + C$
 - (d) $y = \sin(x + y) + C$

The solution of the differential equation $\tan x \, dy + \tan y \, dx = 0$ is (a) $y \tan x + x \tan y = C$

(c) $\sin x + \sin y = C$

(b) $\sec^2 x + \sec^2 y = C$

(d) $\sin x \sin y = C$

The solution of a differential equation $e^{x-y} dx + e^{y-x} dy = 0$ is

(a) $e^{xy} = C$

(b) $e^{2x} + e^{2y} = C$

(c) x+y=C

(d) x - y = C

If $\cot x + \tan y = C$ is a solution of a differential equation then the corresponding differential equation is

- (a) $\frac{dy}{dx} = \cot x + \tan y$
- (b) $\frac{dy}{dx} = \cot x \tan y$
- (c) $\frac{dy}{dx} = \frac{\cos^2 y}{\sin^2 x}$ (d) $\frac{dy}{dx} = \frac{\sin^2 x}{\cos^2 y}$

The solution of a differential equation $\frac{dy}{dx} = \frac{y-x}{r}$ is

- (a) $y x \ln x = cx$
- $(b) y + x \ln x = cx$
- (c) $x + y \ln y = cy$

(d) $x - y \ln y = cy$

The solution of a differential equation xdy - ydx = 0 is

- (a) x = cy
- (b) y = cx
- (c) xy = c (d) none of these

The solution of a differential equation $\frac{dy}{dx} = e^x$ is

- (a) $y = e^x + c$ (b) $y = e^x$
- (c) $ye^x = c$
- (d) $y = \frac{c}{e^x}$

10. The solution of a differential equation $\frac{dy}{dx} = \frac{1+y}{1+x}$ is

(a) 1 + y = c(1 + y)

(b) 1+x=c(1+x)

(c) 1 + x = c(x + y)

(d) 1 + x = c(1 + y)

11. The solution of a differential equation $\frac{dy}{dx} + \cot y = 0$ is

- (a) $e^x = c\cos y$ (b) $e^x = c\sin y$ (c) $e^y = c\cos x$
- (d) $e^y = c \sin x$

12. The solution of a differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

(d) lny = cx

- (a) $y = \frac{c}{r}$ (b) $y = c \ln x$
- (c) y = cx

The solution of a differential equation $\frac{dy}{dx} = 2x + 5$ is 13.

(a)
$$y = x^2 + 5x + 1$$

(b)
$$y = x^2 + 5x$$

(c)
$$y = x^2 + 5x + c$$

(d)
$$y = x^2 + 5x + cx$$

The solution of a differential equation $\frac{dy}{dx} = \frac{ax+b}{cv+d}$ is 14.

(a)
$$cv + d = ax + b + k$$

(a)
$$cy + d = ax + b + k$$
 (b) $cy^2 + d^2 = ax^2 + b^2$

(c)
$$cv^2 + 2d = ax^2 + 2b$$

(c)
$$cy^2 + 2d = ax^2 + 2b$$
 (d) $cy^2 + 2dy = ax^2 + 2bx + k$

ANSWER:

1. (c) 2. (d) 3. (a) 4. (c) 5. (b) 6. (c)

7. (b)

9. (a) 10. (d) 11. (a) 12. (c) 13. (c)

14.(d)

OBJECTIVE QUESTIONS

- The system of equations x 2y + 5 = 0 and 2x 4y + 7 = 0 is
 - (a) consistent

- (b) in consistent
- (c) consistent with unique solution
- (d) Neither
- The inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ 2.
 - (a) exists

- (b) does not exists
- doubtful (c)
- The system of equations x y = 2, 3x 3y = 6 represents
 - (a) Parallel lines

(b) coincident lines

(c) intersecting lines

- (d) none
- The graph of $3x + 2y \ge 6$ contains the point

 - (a) (5,3) (b) (0,0)
- (c) (1, 1) (d)(-2, 1)

200 ESS 200	the late and will like the fire and the late has been tree									-
5.	Two straigh	t lines 2	2x + y	= 0 and	x - 3y	= 0 ir	terse	cts at p	oint	
	(a) (3, 2)	(t) (4,	3)	(((2)	, 3)	(d) ((0, 0)	
6.	Maximum v	alue of	z = 4x	+ y at	(0, 0), (30, 0)	, (20,	30) ar	id (0, 5	ei (0
	(a) 510	(b) 110)	(0	c) 12	20	(d) 5	0	, .9
7.	The system	of equa	tion x	-2y + 2	z = 3 ar	id 2x -	- 5y -	-z=4	has	
	(a) unique s	olution	(b)	No se	olution	(c) in	finitely	y many	7
	solution						1 haa			
8.	The system	of equa	ions x	+y=2	and x	- y =	4 nas			
	(a) unique so solution	olution	(b)	·infini	tely ma	iny so	lutior	1 ((c) No)
9.	$3-2x \ge 7$ in	nplies tl	ne inec	quality						
	(a) $x \ge -2$	(b) –x	≤ 2	(c) x <u>:</u>	≤ 2	(d) >	< ≤ −2	
10.	$2x + 3 \ge 5$ in	nplies th	he inec	quality						
	(a) $x \ge 1$	(b) x≤	1	(c) x >	> 1	(d) x	< 1	
11.	The root of t	he equa	tion 3	x^3-2x^2	+5x -	6 = 0	is			
	(a) 2	(b) 1		(c) 3	8 ((d) 5		
12.	The fourth re	oot of 2	60 lies	in						
	(a) (1, 2)	(b)	(2,	3)	(c) (3,	4)	(d) (4	. 5)	
13.	The Newton's	s secon	d appr	oximati	on (x ₂)	of roo	ot of a	$x^5 - x$	- 1= 0	with
	(a) 1.5	(b)	1.2:	5	(c) 1.7	15	(d) 1.	85	
14.	The root of e	quation	f(x) =	0 alwa						h) if
	(a) f(a) f (b)				1 10 10 10 10 10			b) > 0	υ (a 7	0) 11
	(c) $f(a) > f(b)$)					(a) 1((b) <	-		
15.	The graph of	x > 3 is	1 1			(u) 1	(0) \	1(a)		
	(a) open half				e toptor	(b) a	أدمما	inilie.	E80-3-1	
(c) open half plane								halfr	•	
					((d) c	losed	half p	lane	
ANS	WERS:									
1.1		3.b	4.a	5.d	6.c	7.c	4	3.a	9.d	10.
11.	b 12.d 1	3.b	14.a	15.a		7.0		o.a	7.u	-
									40	

Course Title: Mathematics II

Code No: CAMT 154

Semester: II

Pull Marks: 60 Pass Marks: 24 Time: 3 hours

Candidates are required to answer the questions in their own words as far as possible.

Group B

Attempt any SIX questions.

s defined as:

11. If a function f(x) is defined as:

$$f(x) = 3x^2 + 2$$
 if $x < 1$
 $2x + 3$ if $x > 1$
4 if $x = 1$

Discuss the continuity of function at x = 1.

- 12. Find the derivative of sin3x by using definition.
- 13. Using L-Hospital's rule evaluate: $\lim_{x\to\infty} \frac{2x^2 + 3x}{1 + 5x^2}$
- 14. If demand function and cost function are given by P(Q) = 1 3Q and $C(Q) = Q^2 2Q$ respectively, where Q is the quality (number) of the product then find output of the factor for the maximum profit.
- 15. Evaluate: (a) $\int \frac{dx}{1 \sin x}$ (b) $\int_{0}^{1} (x^2 + 5) dx$
- 16. Solve: $\frac{dy}{dx} = \frac{xy + y}{xy + x}$
- 17. Examine the consistency of the system of equation and solve if possible.

$$x_1 + x_2 - x_3 = 1$$
,
 $2x_1 + 3x_2 + 3x_3 = 3$
 $x_1 - 3x_2 + 3x_3 = 2$

Group C

Attempt any two questions.

 $[2 \times 10 = 20]$

 Define Homogeneous equation and solve the following system of equations using Inverse Matrix Method.

$$-2x + 2y + z = -4$$

 $-8x + 7y - 4x = -47$
 $9x - 8y + 5z = 55$

- 19. State Rolle's Theorem and interpret it geometrically. Verify Rolle's theorem for $f(x) = x^2 4$ in $-3 \le x \le 3$.
- 20. Using Composite Trapezoidal Rule, compute $\int_{0}^{2} (2x^2 1) dx$ with four intervals. Find the absolute error of approximation from its actual value.